Have I gotten all the definitions correct?  The only one that consistently
works on a random matrix provided by Kip was provided by Raul

    ishermitian =: -: +@|:
   ]K=:hermy=. (([: <: [: +: 0 ?@$~ ,~) j. [: <: [: +: 0 ?@$~ ,~) 3  
 0.681691j_0.530679    0.105724j0.221189  0.140368j_0.982508
_0.469356j_0.623093     0.71661j0.893344  _0.125895j0.532656
_0.882974j_0.727597 0.0632899j_0.0448332 _0.975941j_0.730788
   hft =: + +@|:@(- ] * =@i.@#)  NB.  Kip
   ishermitian hft K
0
   hft=: (+ +@|: * >/~@i.@#) NB. Ai
   ishermitian hft K
0
   hft=: (% 1 + =@i.@#)@:+ +@|:  NB. Raul
   ishermitian hft K
1
   hft=:((23 b.&.(a.&i.)&.(2&(3!:5))&.+. +@|:)) NB. Henry
   ishermitian hft K
0
   hft=: 0&=`(,: +@|:)}  
   ishermitian hft K
0
   
Linda


-----Original Message-----
From: programming-boun...@forums.jsoftware.com
[mailto:programming-boun...@forums.jsoftware.com] On Behalf Of Henry Rich
Sent: Tuesday, January 15, 2013 6:21 PM
To: programm...@jsoftware.com
Subject: Re: [Jprogramming] Hermitian from triangular

Nah, that's not beyond impish.  The devilish solution is to take the bitwise
OR of the matrix with its conjugate transpose (but that's easier in
assembler language than in J:
(23 b.&.(a.&i.)&.(2&(3!:5))&.+. +@|:))
).  And you need to be sure that the zeros on the lower diagonal and below
are true zeros!

Henry Rich

On 1/15/2013 6:03 PM, km wrote:
> Oh, boy!  (v1`v2) } y <--> (v1 y) } (v2 y)
>
> Brief and devilish, take care for your soul, Henry!
>
> --Kip
>
> Sent from my iPad
>
>
> On Jan 15, 2013, at 3:39 PM, Henry Rich <henryhr...@nc.rr.com> wrote:
>
>>    hft =: 0&=`(,: +@|:)}
>>
>> Henry Rich
>>
>> On 1/15/2013 5:25 AM, km wrote:
>>> This is an easy one.  A Hermitian matrix matches its conjugate
transpose.  Write a verb hft that creates a Hermitian matrix from a
triangular one that has a real diagonal.
>>>
>>>      ishermitian =: -: +@|:
>>>      ]A =: 2 2 $ 1 2j3 0 4
>>>   1 2j3
>>>   0   4
>>>      ]B =: hft A
>>>      1 2j3
>>>   2j_3   4
>>>      ishermitian A
>>>   0
>>>      ishermitian B
>>>   1
>>>
>>> Kip Murray
>>>
>>> Sent from my iPad
>>> --------------------------------------------------------------------
>>> -- For information about J forums see 
>>> http://www.jsoftware.com/forums.htm
>> ---------------------------------------------------------------------
>> - For information about J forums see 
>> http://www.jsoftware.com/forums.htm
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to