Here is my latest attempt to model set theory in J.  All sets have distinct 
elements and are ordered by /:~ so that match -: determines whether two sets 
are 
the same.  Sets must be created by the verb set or by provided operations.  The 
intention is theoretical not practical!  --Kip Murray

    ]A =: set 0;'b';2  NB. elements 0 'b' 2 are put in boxes preceding the last
┌─┬─┬─┬┐
│0│2│b││
└─┴─┴─┴┘
    ]B =: set 2;'b';'b';0  NB. same elements so same set
┌─┬─┬─┬┐
│0│2│b││
└─┴─┴─┴┘

    A -: B
1

    ]C =: set 2;'b';'c';'d'
┌─┬─┬─┬─┬┐
│2│b│c│d││
└─┴─┴─┴─┴┘

    B sand C  NB. intersection, "set and"
┌─┬─┬┐
│2│b││
└─┴─┴┘
    B sor C   NB. union
┌─┬─┬─┬─┬─┬┐
│0│2│b│c│d││
└─┴─┴─┴─┴─┴┘

    (A sand B sor C) -: (A sand B) sor (A sand C)  NB. distributive law
1

    pwrset A  NB. A has 3 elements, power set has 2^3, including the empty set
┌──────┬────────┬────┬──────┬────┬──────┬──┬────┬┐
│┌─┬─┬┐│┌─┬─┬─┬┐│┌─┬┐│┌─┬─┬┐│┌─┬┐│┌─┬─┬┐│┌┐│┌─┬┐││
││0│2││││0│2│b││││0││││0│b││││2││││2│b│││││││b││││
│└─┴─┴┘│└─┴─┴─┴┘│└─┴┘│└─┴─┴┘│└─┴┘│└─┴─┴┘│└┘│└─┴┘││
└──────┴────────┴────┴──────┴────┴──────┴──┴────┴┘
    NB. Elements are contained in boxes preceding the last which is always
    NB. the Boxed Empty a: (Ace).  The use of a: permits a unique and visible
    NB. empty set, viz

    (,a:) -: E =: A less A  NB. see verb less below
1
    E
┌┐
││
└┘
    a:
┌┐
││
└┘
    E -: a:
0

NB. Definitions

E =: ,a:                 NB. empty set
set =: a: ,~ [: /:~ ~.   NB. create set from boxed list y
                          NB. each box of y encloses an element
get =: { }:              NB. get boxed elements (from curtail because
                          NB. elements are inside boxes of curtail)
isin =: e. }:            NB. Do boxes in list x contain elements of y?
less =: a: ,~ -.&}:      NB. remove elements of y from x
sand =: [ less less      NB. intersection, "set and"
sor =: a: ,~ [: /:~ [: ~. ,&}:  NB. union, "set or"
diff =: less sor less~   NB. symmetric difference
card =: [: # }:          NB. count elements: cardinality
issubs =: [ -: sand      NB. Is x a subset of y?
pwrset =: a: ,~ [: /:~ ] (<@#~) 1 (,~"1) 2 (#"1~ {:)@#:@i...@^ #...@}:
                          NB. pwrset by Raul Miller, adapted
islist =: 1 = #...@$        NB. islist through isunique from validate.ijs
isboxed =: 0 < L.
issorted =: -: /:~
isunique =: -: ~.
isset =: islist *. isboxed *. (a: -: {:) *. issorted@:}: *. isunique@:}:
                          NB. isset y asks, is array y a set?
iselement =: <@[ isin ]  NB. Is array x an element of set y?

NB. End

----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to