I found calibrated loop count is not stable so memory usage is very different
in some benchmarks.
Especially, RAM usage of logging benchmark is very relating to loop count:

$ PYTHONMALLOC=malloc LD_PRELOAD=$HOME/local/lib/libmimalloc.so
./python bm_logging.py simple --track-memory --fast --inherit-environ
PYTHONMALLOC,LD_PRELOAD -v
Run 1: calibrate the number of loops: 512
- calibrate 1: 12.7 MB (loops: 512)
Calibration: 1 warmup, 512 loops
Run 2: 0 warmups, 1 value, 512 loops
- value 1: 12.9 MB
Run 3: 0 warmups, 1 value, 512 loops
- value 1: 12.9 MB
...

$ PYTHONMALLOC=malloc LD_PRELOAD=$HOME/local/lib/libmimalloc.so
./python bm_logging.py simple --track-memory --fast --inherit-environ
PYTHONMALLOC,LD_PRELOAD -v -l1024
Run 1: 0 warmups, 1 value, 1024 loops
- value 1: 21.4 MB
Run 2: 0 warmups, 1 value, 1024 loops
- value 1: 21.4 MB
Run 3: 0 warmups, 1 value, 1024 loops
- value 1: 21.4 MB
...

-- 
Inada Naoki  <songofaca...@gmail.com>
_______________________________________________
Python-Dev mailing list -- python-dev@python.org
To unsubscribe send an email to python-dev-le...@python.org
https://mail.python.org/mailman3/lists/python-dev.python.org/
Message archived at 
https://mail.python.org/archives/list/python-dev@python.org/message/QBXLRFXDD5TLLDATV2PWE2QNLLDWRVXY/

Reply via email to