Although QEMU already has native memory region abstraction, this is MemoryRegion, which supports overlapping.
But vm-memory doesn't support overlapped memory, so MemoryRegionSection is more proper to implement vm_memory::GuestMemoryRegion trait. Implement vm_memory::GuestMemoryRegion for MemoryRegionSection, and provide low-level memory write/read/store/load bindings based on MemoryRegionSection. Additionally, add necessay helpers (fuzz_dma_read() and is_access_allowed()) for MemoryRegionSection. Signed-off-by: Zhao Liu <zhao1....@intel.com> --- rust/qemu-api/src/memory.rs | 393 +++++++++++++++++++++++++++++++++++- 1 file changed, 391 insertions(+), 2 deletions(-) diff --git a/rust/qemu-api/src/memory.rs b/rust/qemu-api/src/memory.rs index e40fad6cf19e..c8faa3b9c1e9 100644 --- a/rust/qemu-api/src/memory.rs +++ b/rust/qemu-api/src/memory.rs @@ -2,17 +2,33 @@ // Author(s): Paolo Bonzini <pbonz...@redhat.com> // SPDX-License-Identifier: GPL-2.0-or-later -//! Bindings for `MemoryRegion`, `MemoryRegionOps` and `MemTxAttrs` +//! Bindings for `MemoryRegion`, `MemoryRegionOps`, `MemTxAttrs` and +//! `MemoryRegionSection`. use std::{ ffi::{c_uint, c_void, CStr, CString}, + io::ErrorKind, marker::PhantomData, + mem::size_of, + ops::Deref, + sync::atomic::Ordering, }; +// FIXME: Convert hwaddr to GuestAddress pub use bindings::{hwaddr, MemTxAttrs}; +pub use vm_memory::GuestAddress; +use vm_memory::{ + bitmap::BS, Address, AtomicAccess, Bytes, GuestMemoryError, GuestMemoryRegion, + GuestMemoryResult, GuestUsize, MemoryRegionAddress, ReadVolatile, VolatileSlice, WriteVolatile, +}; use crate::{ - bindings::{self, device_endian, memory_region_init_io}, + bindings::{ + self, device_endian, memory_region_init_io, section_access_allowed, + section_covers_region_addr, section_fuzz_dma_read, section_get_host_addr, + section_rust_load, section_rust_read_continue_step, section_rust_store, + section_rust_write_continue_step, MEMTX_OK, + }, callbacks::FnCall, cell::Opaque, prelude::*, @@ -202,3 +218,376 @@ unsafe impl ObjectType for MemoryRegion { unspecified: true, ..Zeroable::ZERO }; + +/// A safe wrapper around [`bindings::MemoryRegionSection`]. +/// +/// This struct is fundamental for integrating QEMU's memory model with +/// the [`vm-memory`] ecosystem. It directly maps to the concept of +/// [`GuestMemoryRegion`](vm_memory::GuestMemoryRegion) and implements +/// that trait. +/// +/// ### `MemoryRegion` vs. `MemoryRegionSection` +/// +/// Although QEMU already has native memory region abstraction, this is +/// [`MemoryRegion`], which supports overlapping. But `vm-memory` doesn't +/// support overlapped memory, so `MemoryRegionSection` is more proper +/// to implement [`GuestMemoryRegion`](vm_memory::GuestMemoryRegion) +/// trait. +/// +/// One point should pay attention is, +/// [`MemoryRegionAddress`](vm_memory::MemoryRegionAddress) represents the +/// address or offset within the `MemoryRegionSection`. But traditional C +/// bindings treats memory region address or offset as the offset within +/// `MemoryRegion`. +/// +/// Therefore, it's necessary to do conversion when calling C bindings +/// with `MemoryRegionAddress` from the context of `MemoryRegionSection`. +/// +/// ### Usage +/// +/// Considerring memory access is almost always through `AddressSpace` +/// in QEMU, `MemoryRegionSection` is intended for **internal use only** +/// within the `vm-memory` backend implementation. +/// +/// Device and other external users should **not** use or create +/// `MemoryRegionSection`s directly. Instead, they should work with the +/// higher-level `MemoryRegion` API to create and manage their device's +/// memory. This separation of concerns mirrors the C API and avoids +/// confusion about different memory abstractions. +#[repr(transparent)] +#[derive(qemu_api_macros::Wrapper)] +pub struct MemoryRegionSection(Opaque<bindings::MemoryRegionSection>); + +unsafe impl Send for MemoryRegionSection {} +unsafe impl Sync for MemoryRegionSection {} + +impl Deref for MemoryRegionSection { + type Target = bindings::MemoryRegionSection; + + fn deref(&self) -> &Self::Target { + // SAFETY: Opaque<> wraps a pointer from C side. The validity + // of the pointer is confirmed at the creation of Opaque<>. + unsafe { &*self.0.as_ptr() } + } +} + +impl MemoryRegionSection { + /// A fuzz testing hook for DMA read. + /// + /// When CONFIG_FUZZ is not set, this hook will do nothing. + #[allow(dead_code)] + fn fuzz_dma_read(&self, addr: GuestAddress, len: GuestUsize) -> &Self { + // SAFETY: Opaque<> ensures the pointer is valid, and here it + // takes into account the offset conversion between MemoryRegionSection + // and MemoryRegion. + unsafe { + section_fuzz_dma_read( + self.as_mut_ptr(), + addr.checked_add(self.deref().offset_within_region) + .unwrap() + .raw_value(), + len, + ) + }; + self + } + + /// A helper to check if the memory access is allowed. + /// + /// This is needed for memory write/read. + #[allow(dead_code)] + fn is_access_allowed(&self, addr: MemoryRegionAddress, len: GuestUsize) -> bool { + // SAFETY: Opaque<> ensures the pointer is valid, and here it + // takes into account the offset conversion between MemoryRegionSection + // and MemoryRegion. + let allowed = unsafe { + section_access_allowed( + self.as_mut_ptr(), + MEMTXATTRS_UNSPECIFIED, + addr.checked_add(self.deref().offset_within_region) + .unwrap() + .raw_value(), + len, + ) + }; + allowed + } +} + +impl Bytes<MemoryRegionAddress> for MemoryRegionSection { + type E = GuestMemoryError; + + /// The memory wirte interface based on `MemoryRegionSection`. + /// + /// This function - as an intermediate step - is called by FlatView's + /// write(). And it shouldn't be called to access memory directly. + fn write(&self, buf: &[u8], addr: MemoryRegionAddress) -> GuestMemoryResult<usize> { + let len = buf.len() as u64; + let mut remain = len; + + // SAFETY: the pointers and reference are convertible and the + // offset conversion is considerred. + let ret = unsafe { + section_rust_write_continue_step( + self.as_mut_ptr(), + MEMTXATTRS_UNSPECIFIED, + buf.as_ptr(), + len, + addr.checked_add(self.deref().offset_within_region) + .unwrap() + .raw_value(), + &mut remain, + ) + }; + + if ret == MEMTX_OK { + return Ok(remain as usize); + } else { + return Err(GuestMemoryError::InvalidBackendAddress); + } + } + + /// The memory read interface based on `MemoryRegionSection`. + /// + /// This function - as an intermediate step - is called by FlatView's + /// read(). And it shouldn't be called to access memory directly. + fn read(&self, buf: &mut [u8], addr: MemoryRegionAddress) -> GuestMemoryResult<usize> { + let len = buf.len() as u64; + let mut remain = len; + + // SAFETY: the pointers and reference are convertible and the + // offset conversion is considerred. + let ret = unsafe { + section_rust_read_continue_step( + self.as_mut_ptr(), + MEMTXATTRS_UNSPECIFIED, + buf.as_mut_ptr(), + len, + addr.checked_add(self.deref().offset_within_region) + .unwrap() + .raw_value(), + &mut remain, + ) + }; + + if ret == MEMTX_OK { + return Ok(remain as usize); + } else { + return Err(GuestMemoryError::InvalidBackendAddress); + } + } + + /// The memory store interface based on `MemoryRegionSection`. + /// + /// This function - as the low-level store implementation - is + /// called by FlatView's store(). And it shouldn't be called to + /// access memory directly. + fn store<T: AtomicAccess>( + &self, + val: T, + addr: MemoryRegionAddress, + _order: Ordering, + ) -> GuestMemoryResult<()> { + let len = size_of::<T>(); + + if len > size_of::<u64>() { + return Err(GuestMemoryError::IOError(std::io::Error::new( + ErrorKind::InvalidInput, + "failed to store the data more then 8 bytes", + ))); + } + + // Note: setcion_rust_store() accepts `const uint8_t *buf`. + // + // This is a "compromise" solution: vm-memory requires AtomicAccess + // but QEMU uses uint64_t as the default type. Here we can't convert + // AtomicAccess to u64, since complier will complain "an `as` + // expression can only be used to convert between primitive types or + // to coerce to a specific trait object", or other endless errors + // about convertion to u64. + // + // Fortunately, we can use a byte array to bridge the Rust wrapper + // and the C binding. This approach is not without a trade-off, + // however: the section_rust_store() function requires an additional + // conversion from bytes to a uint64_t. This performance overhead is + // considered acceptable. + // + // SAFETY: the pointers are convertible and the offset conversion is + // considerred. + let res = unsafe { + section_rust_store( + self.as_mut_ptr(), + addr.checked_add(self.deref().offset_within_region) + .unwrap() + .raw_value(), + val.as_slice().as_ptr(), + MEMTXATTRS_UNSPECIFIED, + len as u64, + ) + }; + + match res { + MEMTX_OK => Ok(()), + _ => Err(GuestMemoryError::InvalidBackendAddress), + } + } + + /// The memory load interface based on `MemoryRegionSection`. + /// + /// This function - as the low-level load implementation - is + /// called by FlatView's load(). And it shouldn't be called to + /// access memory directly. + fn load<T: AtomicAccess>( + &self, + addr: MemoryRegionAddress, + _order: Ordering, + ) -> GuestMemoryResult<T> { + let len = size_of::<T>(); + + if len > size_of::<u64>() { + return Err(GuestMemoryError::IOError(std::io::Error::new( + ErrorKind::InvalidInput, + "failed to load the data more then 8 bytes", + ))); + } + + let mut val: T = T::zeroed(); + + // Note: setcion_rust_load() accepts `uint8_t *buf`. + // + // It has the similar reason as store() with the slight difference, + // which is section_rust_load() requires additional conversion of + // uint64_t to bytes. + // + // SAFETY: the pointers are convertible and the offset conversion is + // considerred. + let res = unsafe { + section_rust_load( + self.as_mut_ptr(), + addr.checked_add(self.deref().offset_within_region) + .unwrap() + .raw_value(), + val.as_mut_slice().as_mut_ptr(), + MEMTXATTRS_UNSPECIFIED, + size_of::<T>() as u64, + ) + }; + + match res { + MEMTX_OK => Ok(val), + _ => Err(GuestMemoryError::InvalidBackendAddress), + } + } + + fn write_slice(&self, _buf: &[u8], _addr: MemoryRegionAddress) -> GuestMemoryResult<()> { + unimplemented!() + } + + fn read_slice(&self, _buf: &mut [u8], _addr: MemoryRegionAddress) -> GuestMemoryResult<()> { + unimplemented!() + } + + fn read_volatile_from<F>( + &self, + _addr: MemoryRegionAddress, + _src: &mut F, + _count: usize, + ) -> GuestMemoryResult<usize> + where + F: ReadVolatile, + { + unimplemented!() + } + + fn read_exact_volatile_from<F>( + &self, + _addr: MemoryRegionAddress, + _src: &mut F, + _count: usize, + ) -> GuestMemoryResult<()> + where + F: ReadVolatile, + { + unimplemented!() + } + + fn write_volatile_to<F>( + &self, + _addr: MemoryRegionAddress, + _dst: &mut F, + _count: usize, + ) -> GuestMemoryResult<usize> + where + F: WriteVolatile, + { + unimplemented!() + } + + fn write_all_volatile_to<F>( + &self, + _addr: MemoryRegionAddress, + _dst: &mut F, + _count: usize, + ) -> GuestMemoryResult<()> + where + F: WriteVolatile, + { + unimplemented!() + } +} + +impl GuestMemoryRegion for MemoryRegionSection { + type B = (); + + /// Get the memory size covered by this MemoryRegionSection. + fn len(&self) -> GuestUsize { + self.deref().size as GuestUsize + } + + /// Return the minimum (inclusive) Guest physical address managed by + /// this MemoryRegionSection. + fn start_addr(&self) -> GuestAddress { + GuestAddress(self.deref().offset_within_address_space) + } + + fn bitmap(&self) -> BS<'_, Self::B> { + () + } + + /// Check whether the @addr is covered by this MemoryRegionSection. + fn check_address(&self, addr: MemoryRegionAddress) -> Option<MemoryRegionAddress> { + // SAFETY: the pointer is convertible and the offset conversion is + // considerred. + if unsafe { + section_covers_region_addr( + self.as_mut_ptr(), + addr.checked_add(self.deref().offset_within_region) + .unwrap() + .raw_value(), + ) + } { + Some(addr) + } else { + None + } + } + + /// Get the host virtual address from the offset of this MemoryRegionSection + /// (@addr). + fn get_host_address(&self, addr: MemoryRegionAddress) -> GuestMemoryResult<*mut u8> { + self.check_address(addr) + .ok_or(GuestMemoryError::InvalidBackendAddress) + .map(|addr| + // SAFETY: the pointers are convertible and the offset + // conversion is considerred. + unsafe { section_get_host_addr(self.as_mut_ptr(), addr.raw_value()) }) + } + + fn get_slice( + &self, + _offset: MemoryRegionAddress, + _count: usize, + ) -> GuestMemoryResult<VolatileSlice<BS<Self::B>>> { + unimplemented!() + } +} -- 2.34.1