Hi Edward. The new Jacobian, does not do the Job:
-2, is the implemented C code chi2 Jacobian. -1, is: ------- # Make partial derivative, with respect to r2eff. d_chi2_d_r2eff = 2.0 * i0 * times * ( -i0 * exp( -r2eff * times) + values) * exp( -r2eff * times ) / errors**2 # Make partial derivative, with respect to i0. d_chi2_d_i0 = - 2.0 * ( -i0 * exp( -r2eff * times) + values) * exp( -r2eff * times) / errors**2 --------- Results from: Relax_disp.verify_estimate_r2eff_err_compare_mc -2 37.619 17.290 25.616 16.036 16.164 32.826 22.920 21.462 7.777 145.309 36.884 9.116 6.199 7.018 sum= 402.235 -1 0.052 0.023 0.034 0.021 0.020 0.041 0.030 0.028 0.011 0.163 0.048 0.012 0.009 0.010 sum= 0.502 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 sum= 0.000 10 0.041 0.052 0.040 0.042 0.040 0.037 0.027 0.017 0.027 0.043 0.008 0.015 0.010 0.006 sum= 0.405 20 0.029 0.036 0.037 0.040 0.040 0.028 0.050 0.035 0.035 0.042 0.017 0.018 0.010 0.007 sum= 0.424 30 0.036 0.038 0.036 0.054 0.042 0.036 0.049 0.034 0.034 0.038 0.014 0.018 0.010 0.008 sum= 0.447 40 0.041 0.040 0.040 0.054 0.041 0.044 0.042 0.037 0.034 0.043 0.013 0.018 0.007 0.010 sum= 0.462 2014-08-29 11:01 GMT+02:00 Troels Emtekær Linnet <tlin...@nmr-relax.com>: > Hi Edward. > > Would it be possible to have both? > > The exponential Jacobian, and the chi2 Jacobian. > > My tests last night showed something weird. > > Using the chi2 Jacobian, the errors come closer to the ones reported > my MC calculations. > The direct jacobian would have double error on R2eff. > > But when fitting for R1rho models, using the errors from the direct > jacobian, was much better in agreement with > MC error fitting. > > The parameters from chi2 Jacobian, was worse. > > See verify_r1rho_kjaergaard_missing_r1() in systemtest for comparison. > > Look at the 'kex' parameter! > > # Compare values. > if spin_id == ':52@N': > if param == 'r1': > if model == MODEL_NOREX: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 1.46138805) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 1.46328102) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 1.43820629) > elif model == MODEL_DPL94: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 1.44845742) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 1.45019848) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 1.44666512) > elif model == MODEL_TP02: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 1.54354392) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 1.54352369) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 1.55964020) > elif model == MODEL_TAP03: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 1.54356410) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 1.54354367) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 1.55967157) > elif model == MODEL_MP05: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 1.54356416) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 1.54354372) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 1.55967163) > elif model == MODEL_NS_R1RHO_2SITE: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 1.41359221, 5) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 1.41321968, 5) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 1.36303129, 5) > > elif param == 'r2': > if model == MODEL_NOREX: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 11.48392439) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 11.48040934) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 11.47224488) > elif model == MODEL_DPL94: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 10.15688372, 6) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 10.16304887, 6) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 9.20037797, 6) > elif model == MODEL_TP02: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 9.72654896, 6) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 9.72772726, 6) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 9.53948340, 6) > elif model == MODEL_TAP03: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 9.72641887, 6) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 9.72759374, 6) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 9.53926913, 6) > elif model == MODEL_MP05: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 9.72641723, 6) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 9.72759220, 6) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 9.53926778, 6) > elif model == MODEL_NS_R1RHO_2SITE: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 9.34531535, 5) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 9.34602793, 5) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 9.17631409, 5) > > # For all other parameters. > else: > # Get the value. > value = getattr(cur_spin, param) > > # Print value. > print("%-10s %-6s %-6s %3.8f" % ("Parameter:", param, "Value:", value)) > > # Compare values. > if spin_id == ':52@N': > if param == 'phi_ex': > if model == MODEL_DPL94: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 0.07599563) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 0.07561937) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 0.12946061) > > elif param == 'pA': > if model == MODEL_TP02: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 0.88827040) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 0.88807487) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 0.87746233) > elif model == MODEL_TAP03: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 0.88828922) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 0.88809318) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 0.87747558) > elif model == MODEL_MP05: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 0.88828924) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 0.88809321) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 0.87747562) > elif model == MODEL_NS_R1RHO_2SITE: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 0.94504369, 6) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 0.94496541, 6) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 0.92084707, 6) > > elif param == 'dw': > if model == MODEL_TP02: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 1.08875840, 6) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 1.08765638, 6) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 1.09753230, 6) > elif model == MODEL_TAP03: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 1.08837238, 6) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 1.08726698, 6) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 1.09708821, 6) > elif model == MODEL_MP05: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 1.08837241, 6) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 1.08726706, 6) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 1.09708832, 6) > elif model == MODEL_NS_R1RHO_2SITE: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 1.56001812, 5) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 1.55833321, 5) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 1.36406712, 5) > > elif param == 'kex': > if model == MODEL_DPL94: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 4460.43711569, 2) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 4419.03917195, 2) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 6790.22736344, 2) > elif model == MODEL_TP02: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 4921.28602757, 3) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 4904.70144883, 3) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 5146.20306591, 3) > elif model == MODEL_TAP03: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 4926.42963491, 3) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 4909.86877150, 3) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 5152.51105814, 3) > elif model == MODEL_MP05: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 4926.44236315, 3) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 4909.88110195, 3) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 5152.52097111, 3) > elif model == MODEL_NS_R1RHO_2SITE: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 5628.66061488, 2) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 5610.20221435, 2) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 5643.34067090, 2) > > elif param == 'chi2': > if model == MODEL_NOREX: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 848.42016907, 5) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 3363.95829122, 5) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 5976.49946726, 5) > elif model == MODEL_DPL94: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 179.47041241) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 710.24767560) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 612.72616697, 5) > elif model == MODEL_TP02: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 29.33882530, 6) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 114.47142772, 6) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 250.50838162, 5) > elif model == MODEL_TAP03: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 29.29050673, 6) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 114.27987534) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 250.04050719, 5) > elif model == MODEL_MP05: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 29.29054301, 6) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 114.28002272) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 250.04077478, 5) > elif model == MODEL_NS_R1RHO_2SITE: > if r2eff_estimate == 'direct': > self.assertAlmostEqual(value, 34.44010543, 6) > elif r2eff_estimate == 'MC2000': > self.assertAlmostEqual(value, 134.14368365) > elif r2eff_estimate == 'chi2': > self.assertAlmostEqual(value, 278.55121388, 5) > > 2014-08-29 9:49 GMT+02:00 Edward d'Auvergne <edw...@nmr-relax.com>: >> Hi Troels, >> >> I've now converted the target_functions.relax_fit.jacobian() function >> to be the Jacobian of the chi-squared function rather than the >> Jacobian of the exponential function. This should match your >> specific_analyses.relax_disp.estimate_r2eff.func_exp_chi2_grad() >> function. I mixed up the two because the Levenberg-Marquardt >> algorithm in minfx requires the Jacobian of the exponential, and it's >> been 8 years since I last derived and implemented a Jacobian. >> >> Regards, >> >> Edward >> >> >> >> On 28 August 2014 21:43, <tlin...@nmr-relax.com> wrote: >>> Author: tlinnet >>> Date: Thu Aug 28 21:43:13 2014 >>> New Revision: 25411 >>> >>> URL: http://svn.gna.org/viewcvs/relax?rev=25411&view=rev >>> Log: >>> Reverted the logic, that the chi2 Jacobian should be used. >>> >>> Instead, the direct Jacobian exponential is used instead. >>> >>> When fitting with the estimated errors from the Direct Jacobian, the >>> results are MUCH better, and comparable >>> to 2000 Monte-Carlo simulations. >>> >>> task #7822(https://gna.org/task/index.php?7822): Implement user function to >>> estimate R2eff and associated errors for exponential curve fitting. >>> >>> Modified: >>> trunk/specific_analyses/relax_disp/estimate_r2eff.py >>> trunk/test_suite/system_tests/relax_disp.py >>> trunk/user_functions/relax_disp.py >>> >>> Modified: trunk/specific_analyses/relax_disp/estimate_r2eff.py >>> URL: >>> http://svn.gna.org/viewcvs/relax/trunk/specific_analyses/relax_disp/estimate_r2eff.py?rev=25411&r1=25410&r2=25411&view=diff >>> ============================================================================== >>> --- trunk/specific_analyses/relax_disp/estimate_r2eff.py (original) >>> +++ trunk/specific_analyses/relax_disp/estimate_r2eff.py Thu Aug 28 >>> 21:43:13 2014 >>> @@ -90,7 +90,7 @@ >>> return jacobian_matrix_exp_chi2 >>> >>> >>> -def estimate_r2eff_err(chi2_jacobian=True, spin_id=None, epsrel=0.0, >>> verbosity=1): >>> +def estimate_r2eff_err(chi2_jacobian=False, spin_id=None, epsrel=0.0, >>> verbosity=1): >>> """This will estimate the R2eff and i0 errors from the covariance >>> matrix Qxx. Qxx is calculated from the Jacobian matrix and the optimised >>> parameters. >>> >>> @keyword chi2_jacobian: If the Jacobian derived from the chi2 >>> function, should be used instead of the Jacobian from the exponential >>> function. >>> >>> Modified: trunk/test_suite/system_tests/relax_disp.py >>> URL: >>> http://svn.gna.org/viewcvs/relax/trunk/test_suite/system_tests/relax_disp.py?rev=25411&r1=25410&r2=25411&view=diff >>> ============================================================================== >>> --- trunk/test_suite/system_tests/relax_disp.py (original) >>> +++ trunk/test_suite/system_tests/relax_disp.py Thu Aug 28 21:43:13 2014 >>> @@ -2744,13 +2744,13 @@ >>> self.interpreter.minimise.execute(min_algor='Newton', >>> constraints=False, verbosity=1) >>> >>> # Estimate R2eff errors. >>> - self.interpreter.relax_disp.r2eff_err_estimate(chi2_jacobian=False) >>> + self.interpreter.relax_disp.r2eff_err_estimate(chi2_jacobian=True) >>> >>> # Run the analysis. >>> relax_disp.Relax_disp(pipe_name=ds.pipe_name, >>> pipe_bundle=ds.pipe_bundle, results_dir=result_dir_name, models=MODELS, >>> grid_inc=GRID_INC, mc_sim_num=MC_NUM, modsel=MODSEL) >>> >>> # Verify the data. >>> - self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, >>> result_dir_name=result_dir_name, r2eff_estimate='direct') >>> + self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, >>> result_dir_name=result_dir_name, r2eff_estimate='chi2') >>> >>> >>> def test_estimate_r2eff_err_auto(self): >>> @@ -2849,7 +2849,7 @@ >>> relax_disp.Relax_disp(pipe_name=pipe_name, >>> pipe_bundle=pipe_bundle, results_dir=result_dir_name, models=MODELS, >>> grid_inc=GRID_INC, mc_sim_num=MC_NUM, exp_mc_sim_num=EXP_MC_NUM, >>> modsel=MODSEL, r1_fit=r1_fit) >>> >>> # Verify the data. >>> - self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, >>> result_dir_name=result_dir_name, r2eff_estimate='chi2') >>> + self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, >>> result_dir_name=result_dir_name, r2eff_estimate='direct') >>> >>> >>> def test_estimate_r2eff_err_methods(self): >>> >>> Modified: trunk/user_functions/relax_disp.py >>> URL: >>> http://svn.gna.org/viewcvs/relax/trunk/user_functions/relax_disp.py?rev=25411&r1=25410&r2=25411&view=diff >>> ============================================================================== >>> --- trunk/user_functions/relax_disp.py (original) >>> +++ trunk/user_functions/relax_disp.py Thu Aug 28 21:43:13 2014 >>> @@ -636,7 +636,7 @@ >>> uf.title_short = "Estimate R2eff errors." >>> uf.add_keyarg( >>> name = "chi2_jacobian", >>> - default = True, >>> + default = False, >>> py_type = "bool", >>> desc_short = "use of chi2 Jacobian", >>> desc = "If the Jacobian derived from the chi2 function, should be used >>> instead of the Jacobian from the exponential function." >>> >>> >>> _______________________________________________ >>> relax (http://www.nmr-relax.com) >>> >>> This is the relax-commits mailing list >>> relax-comm...@gna.org >>> >>> To unsubscribe from this list, get a password >>> reminder, or change your subscription options, >>> visit the list information page at >>> https://mail.gna.org/listinfo/relax-commits >> >> _______________________________________________ >> relax (http://www.nmr-relax.com) >> >> This is the relax-devel mailing list >> relax-devel@gna.org >> >> To unsubscribe from this list, get a password >> reminder, or change your subscription options, >> visit the list information page at >> https://mail.gna.org/listinfo/relax-devel _______________________________________________ relax (http://www.nmr-relax.com) This is the relax-devel mailing list relax-devel@gna.org To unsubscribe from this list, get a password reminder, or change your subscription options, visit the list information page at https://mail.gna.org/listinfo/relax-devel