You may want to look here: relax -s Relax_disp.test_estimate_r2eff_err_methods -d
2014-08-29 11:57 GMT+02:00 Troels Emtekær Linnet <tlin...@nmr-relax.com>: > Hi Edward. > > There is something totally wrong with the C, Jacobian. > Errors are estimated to: > > 37.619 17.290 25.616 16.036 16.164 32.826 22.920 21.462 7.777 145.309 > 36.884 9.116 6.199 7.018 sum= 402.235 > > Which is much different to: > 0.041 0.040 0.040 0.054 0.041 0.044 0.042 0.037 0.034 0.043 0.013 > 0.018 0.007 0.010 sum= 0.462 > > You can see how the error estimation develops in: > verify_estimate_r2eff_err_compare_mc > > You will see, that just 50 monte carlo simulations is better than estimating. > > Best > Troels > > > 2014-08-29 11:51 GMT+02:00 Edward d'Auvergne <edw...@nmr-relax.com>: >> Hi, >> >> I saw the results from that 'hidden' system test and was wondering >> what was happening? The Jacobian of the chi-squared function should >> remove the factor of 2, as it has a factor of minus two. But it also >> includes the difference between the measured and back-calculated peak >> intensities divided by the variance as well. So why does this >> Jacobian, which is much closer to the 2000 MC simulations, not work? >> I cannot understand this as it is totally illogical. If your error >> estimate is closer to the real thing, then you should get closer to >> the real optimisation results. >> >> Do you have a log file somewhere which contains the results from the >> 2000 MC simulations? It might be worth creating a file which compares >> this, or even more simulations, 100,000 for example, to the covariance >> technique. Once the error estimate technique is functional and >> debugged, then we can work out why the models are optimisating >> differently. These two problems need to be separated and solved >> independently, otherwise you can encounter the common yet fatal coding >> problem of two opposing bugs partially cancelling out their effects. >> >> Regards, >> >> Edward >> >> On 29 August 2014 11:01, Troels Emtekær Linnet <tlin...@nmr-relax.com> wrote: >>> Hi Edward. >>> >>> Would it be possible to have both? >>> >>> The exponential Jacobian, and the chi2 Jacobian. >>> >>> My tests last night showed something weird. >>> >>> Using the chi2 Jacobian, the errors come closer to the ones reported >>> my MC calculations. >>> The direct jacobian would have double error on R2eff. >>> >>> But when fitting for R1rho models, using the errors from the direct >>> jacobian, was much better in agreement with >>> MC error fitting. >>> >>> The parameters from chi2 Jacobian, was worse. >>> >>> See verify_r1rho_kjaergaard_missing_r1() in systemtest for comparison. >>> >>> Look at the 'kex' parameter! >>> >>> # Compare values. >>> if spin_id == ':52@N': >>> if param == 'r1': >>> if model == MODEL_NOREX: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 1.46138805) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 1.46328102) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 1.43820629) >>> elif model == MODEL_DPL94: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 1.44845742) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 1.45019848) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 1.44666512) >>> elif model == MODEL_TP02: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 1.54354392) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 1.54352369) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 1.55964020) >>> elif model == MODEL_TAP03: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 1.54356410) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 1.54354367) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 1.55967157) >>> elif model == MODEL_MP05: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 1.54356416) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 1.54354372) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 1.55967163) >>> elif model == MODEL_NS_R1RHO_2SITE: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 1.41359221, 5) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 1.41321968, 5) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 1.36303129, 5) >>> >>> elif param == 'r2': >>> if model == MODEL_NOREX: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 11.48392439) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 11.48040934) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 11.47224488) >>> elif model == MODEL_DPL94: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 10.15688372, 6) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 10.16304887, 6) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 9.20037797, 6) >>> elif model == MODEL_TP02: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 9.72654896, 6) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 9.72772726, 6) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 9.53948340, 6) >>> elif model == MODEL_TAP03: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 9.72641887, 6) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 9.72759374, 6) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 9.53926913, 6) >>> elif model == MODEL_MP05: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 9.72641723, 6) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 9.72759220, 6) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 9.53926778, 6) >>> elif model == MODEL_NS_R1RHO_2SITE: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 9.34531535, 5) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 9.34602793, 5) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 9.17631409, 5) >>> >>> # For all other parameters. >>> else: >>> # Get the value. >>> value = getattr(cur_spin, param) >>> >>> # Print value. >>> print("%-10s %-6s %-6s %3.8f" % ("Parameter:", param, "Value:", value)) >>> >>> # Compare values. >>> if spin_id == ':52@N': >>> if param == 'phi_ex': >>> if model == MODEL_DPL94: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 0.07599563) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 0.07561937) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 0.12946061) >>> >>> elif param == 'pA': >>> if model == MODEL_TP02: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 0.88827040) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 0.88807487) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 0.87746233) >>> elif model == MODEL_TAP03: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 0.88828922) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 0.88809318) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 0.87747558) >>> elif model == MODEL_MP05: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 0.88828924) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 0.88809321) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 0.87747562) >>> elif model == MODEL_NS_R1RHO_2SITE: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 0.94504369, 6) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 0.94496541, 6) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 0.92084707, 6) >>> >>> elif param == 'dw': >>> if model == MODEL_TP02: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 1.08875840, 6) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 1.08765638, 6) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 1.09753230, 6) >>> elif model == MODEL_TAP03: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 1.08837238, 6) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 1.08726698, 6) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 1.09708821, 6) >>> elif model == MODEL_MP05: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 1.08837241, 6) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 1.08726706, 6) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 1.09708832, 6) >>> elif model == MODEL_NS_R1RHO_2SITE: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 1.56001812, 5) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 1.55833321, 5) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 1.36406712, 5) >>> >>> elif param == 'kex': >>> if model == MODEL_DPL94: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 4460.43711569, 2) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 4419.03917195, 2) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 6790.22736344, 2) >>> elif model == MODEL_TP02: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 4921.28602757, 3) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 4904.70144883, 3) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 5146.20306591, 3) >>> elif model == MODEL_TAP03: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 4926.42963491, 3) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 4909.86877150, 3) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 5152.51105814, 3) >>> elif model == MODEL_MP05: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 4926.44236315, 3) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 4909.88110195, 3) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 5152.52097111, 3) >>> elif model == MODEL_NS_R1RHO_2SITE: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 5628.66061488, 2) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 5610.20221435, 2) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 5643.34067090, 2) >>> >>> elif param == 'chi2': >>> if model == MODEL_NOREX: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 848.42016907, 5) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 3363.95829122, 5) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 5976.49946726, 5) >>> elif model == MODEL_DPL94: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 179.47041241) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 710.24767560) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 612.72616697, 5) >>> elif model == MODEL_TP02: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 29.33882530, 6) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 114.47142772, 6) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 250.50838162, 5) >>> elif model == MODEL_TAP03: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 29.29050673, 6) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 114.27987534) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 250.04050719, 5) >>> elif model == MODEL_MP05: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 29.29054301, 6) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 114.28002272) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 250.04077478, 5) >>> elif model == MODEL_NS_R1RHO_2SITE: >>> if r2eff_estimate == 'direct': >>> self.assertAlmostEqual(value, 34.44010543, 6) >>> elif r2eff_estimate == 'MC2000': >>> self.assertAlmostEqual(value, 134.14368365) >>> elif r2eff_estimate == 'chi2': >>> self.assertAlmostEqual(value, 278.55121388, 5) >>> >>> 2014-08-29 9:49 GMT+02:00 Edward d'Auvergne <edw...@nmr-relax.com>: >>>> Hi Troels, >>>> >>>> I've now converted the target_functions.relax_fit.jacobian() function >>>> to be the Jacobian of the chi-squared function rather than the >>>> Jacobian of the exponential function. This should match your >>>> specific_analyses.relax_disp.estimate_r2eff.func_exp_chi2_grad() >>>> function. I mixed up the two because the Levenberg-Marquardt >>>> algorithm in minfx requires the Jacobian of the exponential, and it's >>>> been 8 years since I last derived and implemented a Jacobian. >>>> >>>> Regards, >>>> >>>> Edward >>>> >>>> >>>> >>>> On 28 August 2014 21:43, <tlin...@nmr-relax.com> wrote: >>>>> Author: tlinnet >>>>> Date: Thu Aug 28 21:43:13 2014 >>>>> New Revision: 25411 >>>>> >>>>> URL: http://svn.gna.org/viewcvs/relax?rev=25411&view=rev >>>>> Log: >>>>> Reverted the logic, that the chi2 Jacobian should be used. >>>>> >>>>> Instead, the direct Jacobian exponential is used instead. >>>>> >>>>> When fitting with the estimated errors from the Direct Jacobian, the >>>>> results are MUCH better, and comparable >>>>> to 2000 Monte-Carlo simulations. >>>>> >>>>> task #7822(https://gna.org/task/index.php?7822): Implement user function >>>>> to estimate R2eff and associated errors for exponential curve fitting. >>>>> >>>>> Modified: >>>>> trunk/specific_analyses/relax_disp/estimate_r2eff.py >>>>> trunk/test_suite/system_tests/relax_disp.py >>>>> trunk/user_functions/relax_disp.py >>>>> >>>>> Modified: trunk/specific_analyses/relax_disp/estimate_r2eff.py >>>>> URL: >>>>> http://svn.gna.org/viewcvs/relax/trunk/specific_analyses/relax_disp/estimate_r2eff.py?rev=25411&r1=25410&r2=25411&view=diff >>>>> ============================================================================== >>>>> --- trunk/specific_analyses/relax_disp/estimate_r2eff.py (original) >>>>> +++ trunk/specific_analyses/relax_disp/estimate_r2eff.py Thu Aug >>>>> 28 21:43:13 2014 >>>>> @@ -90,7 +90,7 @@ >>>>> return jacobian_matrix_exp_chi2 >>>>> >>>>> >>>>> -def estimate_r2eff_err(chi2_jacobian=True, spin_id=None, epsrel=0.0, >>>>> verbosity=1): >>>>> +def estimate_r2eff_err(chi2_jacobian=False, spin_id=None, epsrel=0.0, >>>>> verbosity=1): >>>>> """This will estimate the R2eff and i0 errors from the covariance >>>>> matrix Qxx. Qxx is calculated from the Jacobian matrix and the optimised >>>>> parameters. >>>>> >>>>> @keyword chi2_jacobian: If the Jacobian derived from the chi2 >>>>> function, should be used instead of the Jacobian from the exponential >>>>> function. >>>>> >>>>> Modified: trunk/test_suite/system_tests/relax_disp.py >>>>> URL: >>>>> http://svn.gna.org/viewcvs/relax/trunk/test_suite/system_tests/relax_disp.py?rev=25411&r1=25410&r2=25411&view=diff >>>>> ============================================================================== >>>>> --- trunk/test_suite/system_tests/relax_disp.py (original) >>>>> +++ trunk/test_suite/system_tests/relax_disp.py Thu Aug 28 21:43:13 2014 >>>>> @@ -2744,13 +2744,13 @@ >>>>> self.interpreter.minimise.execute(min_algor='Newton', >>>>> constraints=False, verbosity=1) >>>>> >>>>> # Estimate R2eff errors. >>>>> - >>>>> self.interpreter.relax_disp.r2eff_err_estimate(chi2_jacobian=False) >>>>> + >>>>> self.interpreter.relax_disp.r2eff_err_estimate(chi2_jacobian=True) >>>>> >>>>> # Run the analysis. >>>>> relax_disp.Relax_disp(pipe_name=ds.pipe_name, >>>>> pipe_bundle=ds.pipe_bundle, results_dir=result_dir_name, models=MODELS, >>>>> grid_inc=GRID_INC, mc_sim_num=MC_NUM, modsel=MODSEL) >>>>> >>>>> # Verify the data. >>>>> - self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, >>>>> result_dir_name=result_dir_name, r2eff_estimate='direct') >>>>> + self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, >>>>> result_dir_name=result_dir_name, r2eff_estimate='chi2') >>>>> >>>>> >>>>> def test_estimate_r2eff_err_auto(self): >>>>> @@ -2849,7 +2849,7 @@ >>>>> relax_disp.Relax_disp(pipe_name=pipe_name, >>>>> pipe_bundle=pipe_bundle, results_dir=result_dir_name, models=MODELS, >>>>> grid_inc=GRID_INC, mc_sim_num=MC_NUM, exp_mc_sim_num=EXP_MC_NUM, >>>>> modsel=MODSEL, r1_fit=r1_fit) >>>>> >>>>> # Verify the data. >>>>> - self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, >>>>> result_dir_name=result_dir_name, r2eff_estimate='chi2') >>>>> + self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, >>>>> result_dir_name=result_dir_name, r2eff_estimate='direct') >>>>> >>>>> >>>>> def test_estimate_r2eff_err_methods(self): >>>>> >>>>> Modified: trunk/user_functions/relax_disp.py >>>>> URL: >>>>> http://svn.gna.org/viewcvs/relax/trunk/user_functions/relax_disp.py?rev=25411&r1=25410&r2=25411&view=diff >>>>> ============================================================================== >>>>> --- trunk/user_functions/relax_disp.py (original) >>>>> +++ trunk/user_functions/relax_disp.py Thu Aug 28 21:43:13 2014 >>>>> @@ -636,7 +636,7 @@ >>>>> uf.title_short = "Estimate R2eff errors." >>>>> uf.add_keyarg( >>>>> name = "chi2_jacobian", >>>>> - default = True, >>>>> + default = False, >>>>> py_type = "bool", >>>>> desc_short = "use of chi2 Jacobian", >>>>> desc = "If the Jacobian derived from the chi2 function, should be >>>>> used instead of the Jacobian from the exponential function." >>>>> >>>>> >>>>> _______________________________________________ >>>>> relax (http://www.nmr-relax.com) >>>>> >>>>> This is the relax-commits mailing list >>>>> relax-comm...@gna.org >>>>> >>>>> To unsubscribe from this list, get a password >>>>> reminder, or change your subscription options, >>>>> visit the list information page at >>>>> https://mail.gna.org/listinfo/relax-commits >>>> >>>> _______________________________________________ >>>> relax (http://www.nmr-relax.com) >>>> >>>> This is the relax-devel mailing list >>>> relax-devel@gna.org >>>> >>>> To unsubscribe from this list, get a password >>>> reminder, or change your subscription options, >>>> visit the list information page at >>>> https://mail.gna.org/listinfo/relax-devel _______________________________________________ relax (http://www.nmr-relax.com) This is the relax-devel mailing list relax-devel@gna.org To unsubscribe from this list, get a password reminder, or change your subscription options, visit the list information page at https://mail.gna.org/listinfo/relax-devel