Hi Edward. There is something totally wrong with the C, Jacobian. Errors are estimated to:
37.619 17.290 25.616 16.036 16.164 32.826 22.920 21.462 7.777 145.309 36.884 9.116 6.199 7.018 sum= 402.235 Which is much different to: 0.041 0.040 0.040 0.054 0.041 0.044 0.042 0.037 0.034 0.043 0.013 0.018 0.007 0.010 sum= 0.462 You can see how the error estimation develops in: verify_estimate_r2eff_err_compare_mc You will see, that just 50 monte carlo simulations is better than estimating. Best Troels 2014-08-29 11:51 GMT+02:00 Edward d'Auvergne <edw...@nmr-relax.com>: > Hi, > > I saw the results from that 'hidden' system test and was wondering > what was happening? The Jacobian of the chi-squared function should > remove the factor of 2, as it has a factor of minus two. But it also > includes the difference between the measured and back-calculated peak > intensities divided by the variance as well. So why does this > Jacobian, which is much closer to the 2000 MC simulations, not work? > I cannot understand this as it is totally illogical. If your error > estimate is closer to the real thing, then you should get closer to > the real optimisation results. > > Do you have a log file somewhere which contains the results from the > 2000 MC simulations? It might be worth creating a file which compares > this, or even more simulations, 100,000 for example, to the covariance > technique. Once the error estimate technique is functional and > debugged, then we can work out why the models are optimisating > differently. These two problems need to be separated and solved > independently, otherwise you can encounter the common yet fatal coding > problem of two opposing bugs partially cancelling out their effects. > > Regards, > > Edward > > On 29 August 2014 11:01, Troels Emtekær Linnet <tlin...@nmr-relax.com> wrote: >> Hi Edward. >> >> Would it be possible to have both? >> >> The exponential Jacobian, and the chi2 Jacobian. >> >> My tests last night showed something weird. >> >> Using the chi2 Jacobian, the errors come closer to the ones reported >> my MC calculations. >> The direct jacobian would have double error on R2eff. >> >> But when fitting for R1rho models, using the errors from the direct >> jacobian, was much better in agreement with >> MC error fitting. >> >> The parameters from chi2 Jacobian, was worse. >> >> See verify_r1rho_kjaergaard_missing_r1() in systemtest for comparison. >> >> Look at the 'kex' parameter! >> >> # Compare values. >> if spin_id == ':52@N': >> if param == 'r1': >> if model == MODEL_NOREX: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 1.46138805) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 1.46328102) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 1.43820629) >> elif model == MODEL_DPL94: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 1.44845742) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 1.45019848) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 1.44666512) >> elif model == MODEL_TP02: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 1.54354392) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 1.54352369) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 1.55964020) >> elif model == MODEL_TAP03: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 1.54356410) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 1.54354367) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 1.55967157) >> elif model == MODEL_MP05: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 1.54356416) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 1.54354372) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 1.55967163) >> elif model == MODEL_NS_R1RHO_2SITE: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 1.41359221, 5) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 1.41321968, 5) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 1.36303129, 5) >> >> elif param == 'r2': >> if model == MODEL_NOREX: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 11.48392439) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 11.48040934) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 11.47224488) >> elif model == MODEL_DPL94: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 10.15688372, 6) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 10.16304887, 6) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 9.20037797, 6) >> elif model == MODEL_TP02: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 9.72654896, 6) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 9.72772726, 6) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 9.53948340, 6) >> elif model == MODEL_TAP03: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 9.72641887, 6) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 9.72759374, 6) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 9.53926913, 6) >> elif model == MODEL_MP05: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 9.72641723, 6) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 9.72759220, 6) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 9.53926778, 6) >> elif model == MODEL_NS_R1RHO_2SITE: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 9.34531535, 5) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 9.34602793, 5) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 9.17631409, 5) >> >> # For all other parameters. >> else: >> # Get the value. >> value = getattr(cur_spin, param) >> >> # Print value. >> print("%-10s %-6s %-6s %3.8f" % ("Parameter:", param, "Value:", value)) >> >> # Compare values. >> if spin_id == ':52@N': >> if param == 'phi_ex': >> if model == MODEL_DPL94: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 0.07599563) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 0.07561937) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 0.12946061) >> >> elif param == 'pA': >> if model == MODEL_TP02: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 0.88827040) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 0.88807487) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 0.87746233) >> elif model == MODEL_TAP03: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 0.88828922) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 0.88809318) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 0.87747558) >> elif model == MODEL_MP05: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 0.88828924) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 0.88809321) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 0.87747562) >> elif model == MODEL_NS_R1RHO_2SITE: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 0.94504369, 6) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 0.94496541, 6) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 0.92084707, 6) >> >> elif param == 'dw': >> if model == MODEL_TP02: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 1.08875840, 6) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 1.08765638, 6) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 1.09753230, 6) >> elif model == MODEL_TAP03: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 1.08837238, 6) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 1.08726698, 6) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 1.09708821, 6) >> elif model == MODEL_MP05: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 1.08837241, 6) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 1.08726706, 6) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 1.09708832, 6) >> elif model == MODEL_NS_R1RHO_2SITE: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 1.56001812, 5) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 1.55833321, 5) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 1.36406712, 5) >> >> elif param == 'kex': >> if model == MODEL_DPL94: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 4460.43711569, 2) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 4419.03917195, 2) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 6790.22736344, 2) >> elif model == MODEL_TP02: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 4921.28602757, 3) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 4904.70144883, 3) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 5146.20306591, 3) >> elif model == MODEL_TAP03: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 4926.42963491, 3) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 4909.86877150, 3) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 5152.51105814, 3) >> elif model == MODEL_MP05: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 4926.44236315, 3) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 4909.88110195, 3) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 5152.52097111, 3) >> elif model == MODEL_NS_R1RHO_2SITE: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 5628.66061488, 2) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 5610.20221435, 2) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 5643.34067090, 2) >> >> elif param == 'chi2': >> if model == MODEL_NOREX: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 848.42016907, 5) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 3363.95829122, 5) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 5976.49946726, 5) >> elif model == MODEL_DPL94: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 179.47041241) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 710.24767560) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 612.72616697, 5) >> elif model == MODEL_TP02: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 29.33882530, 6) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 114.47142772, 6) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 250.50838162, 5) >> elif model == MODEL_TAP03: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 29.29050673, 6) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 114.27987534) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 250.04050719, 5) >> elif model == MODEL_MP05: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 29.29054301, 6) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 114.28002272) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 250.04077478, 5) >> elif model == MODEL_NS_R1RHO_2SITE: >> if r2eff_estimate == 'direct': >> self.assertAlmostEqual(value, 34.44010543, 6) >> elif r2eff_estimate == 'MC2000': >> self.assertAlmostEqual(value, 134.14368365) >> elif r2eff_estimate == 'chi2': >> self.assertAlmostEqual(value, 278.55121388, 5) >> >> 2014-08-29 9:49 GMT+02:00 Edward d'Auvergne <edw...@nmr-relax.com>: >>> Hi Troels, >>> >>> I've now converted the target_functions.relax_fit.jacobian() function >>> to be the Jacobian of the chi-squared function rather than the >>> Jacobian of the exponential function. This should match your >>> specific_analyses.relax_disp.estimate_r2eff.func_exp_chi2_grad() >>> function. I mixed up the two because the Levenberg-Marquardt >>> algorithm in minfx requires the Jacobian of the exponential, and it's >>> been 8 years since I last derived and implemented a Jacobian. >>> >>> Regards, >>> >>> Edward >>> >>> >>> >>> On 28 August 2014 21:43, <tlin...@nmr-relax.com> wrote: >>>> Author: tlinnet >>>> Date: Thu Aug 28 21:43:13 2014 >>>> New Revision: 25411 >>>> >>>> URL: http://svn.gna.org/viewcvs/relax?rev=25411&view=rev >>>> Log: >>>> Reverted the logic, that the chi2 Jacobian should be used. >>>> >>>> Instead, the direct Jacobian exponential is used instead. >>>> >>>> When fitting with the estimated errors from the Direct Jacobian, the >>>> results are MUCH better, and comparable >>>> to 2000 Monte-Carlo simulations. >>>> >>>> task #7822(https://gna.org/task/index.php?7822): Implement user function >>>> to estimate R2eff and associated errors for exponential curve fitting. >>>> >>>> Modified: >>>> trunk/specific_analyses/relax_disp/estimate_r2eff.py >>>> trunk/test_suite/system_tests/relax_disp.py >>>> trunk/user_functions/relax_disp.py >>>> >>>> Modified: trunk/specific_analyses/relax_disp/estimate_r2eff.py >>>> URL: >>>> http://svn.gna.org/viewcvs/relax/trunk/specific_analyses/relax_disp/estimate_r2eff.py?rev=25411&r1=25410&r2=25411&view=diff >>>> ============================================================================== >>>> --- trunk/specific_analyses/relax_disp/estimate_r2eff.py (original) >>>> +++ trunk/specific_analyses/relax_disp/estimate_r2eff.py Thu Aug 28 >>>> 21:43:13 2014 >>>> @@ -90,7 +90,7 @@ >>>> return jacobian_matrix_exp_chi2 >>>> >>>> >>>> -def estimate_r2eff_err(chi2_jacobian=True, spin_id=None, epsrel=0.0, >>>> verbosity=1): >>>> +def estimate_r2eff_err(chi2_jacobian=False, spin_id=None, epsrel=0.0, >>>> verbosity=1): >>>> """This will estimate the R2eff and i0 errors from the covariance >>>> matrix Qxx. Qxx is calculated from the Jacobian matrix and the optimised >>>> parameters. >>>> >>>> @keyword chi2_jacobian: If the Jacobian derived from the chi2 >>>> function, should be used instead of the Jacobian from the exponential >>>> function. >>>> >>>> Modified: trunk/test_suite/system_tests/relax_disp.py >>>> URL: >>>> http://svn.gna.org/viewcvs/relax/trunk/test_suite/system_tests/relax_disp.py?rev=25411&r1=25410&r2=25411&view=diff >>>> ============================================================================== >>>> --- trunk/test_suite/system_tests/relax_disp.py (original) >>>> +++ trunk/test_suite/system_tests/relax_disp.py Thu Aug 28 21:43:13 2014 >>>> @@ -2744,13 +2744,13 @@ >>>> self.interpreter.minimise.execute(min_algor='Newton', >>>> constraints=False, verbosity=1) >>>> >>>> # Estimate R2eff errors. >>>> - >>>> self.interpreter.relax_disp.r2eff_err_estimate(chi2_jacobian=False) >>>> + self.interpreter.relax_disp.r2eff_err_estimate(chi2_jacobian=True) >>>> >>>> # Run the analysis. >>>> relax_disp.Relax_disp(pipe_name=ds.pipe_name, >>>> pipe_bundle=ds.pipe_bundle, results_dir=result_dir_name, models=MODELS, >>>> grid_inc=GRID_INC, mc_sim_num=MC_NUM, modsel=MODSEL) >>>> >>>> # Verify the data. >>>> - self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, >>>> result_dir_name=result_dir_name, r2eff_estimate='direct') >>>> + self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, >>>> result_dir_name=result_dir_name, r2eff_estimate='chi2') >>>> >>>> >>>> def test_estimate_r2eff_err_auto(self): >>>> @@ -2849,7 +2849,7 @@ >>>> relax_disp.Relax_disp(pipe_name=pipe_name, >>>> pipe_bundle=pipe_bundle, results_dir=result_dir_name, models=MODELS, >>>> grid_inc=GRID_INC, mc_sim_num=MC_NUM, exp_mc_sim_num=EXP_MC_NUM, >>>> modsel=MODSEL, r1_fit=r1_fit) >>>> >>>> # Verify the data. >>>> - self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, >>>> result_dir_name=result_dir_name, r2eff_estimate='chi2') >>>> + self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, >>>> result_dir_name=result_dir_name, r2eff_estimate='direct') >>>> >>>> >>>> def test_estimate_r2eff_err_methods(self): >>>> >>>> Modified: trunk/user_functions/relax_disp.py >>>> URL: >>>> http://svn.gna.org/viewcvs/relax/trunk/user_functions/relax_disp.py?rev=25411&r1=25410&r2=25411&view=diff >>>> ============================================================================== >>>> --- trunk/user_functions/relax_disp.py (original) >>>> +++ trunk/user_functions/relax_disp.py Thu Aug 28 21:43:13 2014 >>>> @@ -636,7 +636,7 @@ >>>> uf.title_short = "Estimate R2eff errors." >>>> uf.add_keyarg( >>>> name = "chi2_jacobian", >>>> - default = True, >>>> + default = False, >>>> py_type = "bool", >>>> desc_short = "use of chi2 Jacobian", >>>> desc = "If the Jacobian derived from the chi2 function, should be >>>> used instead of the Jacobian from the exponential function." >>>> >>>> >>>> _______________________________________________ >>>> relax (http://www.nmr-relax.com) >>>> >>>> This is the relax-commits mailing list >>>> relax-comm...@gna.org >>>> >>>> To unsubscribe from this list, get a password >>>> reminder, or change your subscription options, >>>> visit the list information page at >>>> https://mail.gna.org/listinfo/relax-commits >>> >>> _______________________________________________ >>> relax (http://www.nmr-relax.com) >>> >>> This is the relax-devel mailing list >>> relax-devel@gna.org >>> >>> To unsubscribe from this list, get a password >>> reminder, or change your subscription options, >>> visit the list information page at >>> https://mail.gna.org/listinfo/relax-devel _______________________________________________ relax (http://www.nmr-relax.com) This is the relax-devel mailing list relax-devel@gna.org To unsubscribe from this list, get a password reminder, or change your subscription options, visit the list information page at https://mail.gna.org/listinfo/relax-devel