Hi Edward.

There is something totally wrong with the C, Jacobian.
Errors are estimated to:

37.619 17.290 25.616 16.036 16.164 32.826 22.920 21.462 7.777 145.309
36.884 9.116 6.199 7.018 sum= 402.235

Which is much different to:
0.041 0.040 0.040 0.054 0.041 0.044 0.042 0.037 0.034 0.043 0.013
0.018 0.007 0.010 sum= 0.462

You can see how the error estimation develops in:
verify_estimate_r2eff_err_compare_mc

You will see, that just 50 monte carlo simulations is better than estimating.

Best
Troels


2014-08-29 11:51 GMT+02:00 Edward d'Auvergne <edw...@nmr-relax.com>:
> Hi,
>
> I saw the results from that 'hidden' system test and was wondering
> what was happening?  The Jacobian of the chi-squared function should
> remove the factor of 2, as it has a factor of minus two.  But it also
> includes the difference between the measured and back-calculated peak
> intensities divided by the variance as well.  So why does this
> Jacobian, which is much closer to the 2000 MC simulations, not work?
> I cannot understand this as it is totally illogical.  If your error
> estimate is closer to the real thing, then you should get closer to
> the real optimisation results.
>
> Do you have a log file somewhere which contains the results from the
> 2000 MC simulations?  It might be worth creating a file which compares
> this, or even more simulations, 100,000 for example, to the covariance
> technique.  Once the error estimate technique is functional and
> debugged, then we can work out why the models are optimisating
> differently.  These two problems need to be separated and solved
> independently, otherwise you can encounter the common yet fatal coding
> problem of two opposing bugs partially cancelling out their effects.
>
> Regards,
>
> Edward
>
> On 29 August 2014 11:01, Troels Emtekær Linnet <tlin...@nmr-relax.com> wrote:
>> Hi Edward.
>>
>> Would it be possible to have both?
>>
>> The exponential Jacobian, and the chi2 Jacobian.
>>
>> My tests last night showed something weird.
>>
>> Using the chi2 Jacobian, the errors come closer to the ones reported
>> my MC calculations.
>> The direct jacobian would have double error on R2eff.
>>
>> But when fitting for R1rho models, using the errors from the direct
>> jacobian, was much better in agreement with
>> MC error fitting.
>>
>> The parameters from chi2 Jacobian, was worse.
>>
>> See verify_r1rho_kjaergaard_missing_r1() in systemtest for comparison.
>>
>> Look at the 'kex' parameter!
>>
>> # Compare values.
>> if spin_id == ':52@N':
>>     if param == 'r1':
>>         if model == MODEL_NOREX:
>>             if r2eff_estimate == 'direct':
>>                 self.assertAlmostEqual(value, 1.46138805)
>>             elif r2eff_estimate == 'MC2000':
>>                 self.assertAlmostEqual(value, 1.46328102)
>>             elif r2eff_estimate == 'chi2':
>>                 self.assertAlmostEqual(value, 1.43820629)
>>         elif model == MODEL_DPL94:
>>             if r2eff_estimate == 'direct':
>>                 self.assertAlmostEqual(value, 1.44845742)
>>             elif r2eff_estimate == 'MC2000':
>>                 self.assertAlmostEqual(value, 1.45019848)
>>             elif r2eff_estimate == 'chi2':
>>                 self.assertAlmostEqual(value, 1.44666512)
>>         elif model == MODEL_TP02:
>>             if r2eff_estimate == 'direct':
>>                 self.assertAlmostEqual(value, 1.54354392)
>>             elif r2eff_estimate == 'MC2000':
>>                 self.assertAlmostEqual(value, 1.54352369)
>>             elif r2eff_estimate == 'chi2':
>>                 self.assertAlmostEqual(value, 1.55964020)
>>         elif model == MODEL_TAP03:
>>             if r2eff_estimate == 'direct':
>>                 self.assertAlmostEqual(value, 1.54356410)
>>             elif r2eff_estimate == 'MC2000':
>>                 self.assertAlmostEqual(value, 1.54354367)
>>             elif r2eff_estimate == 'chi2':
>>                 self.assertAlmostEqual(value, 1.55967157)
>>         elif model == MODEL_MP05:
>>             if r2eff_estimate == 'direct':
>>                 self.assertAlmostEqual(value, 1.54356416)
>>             elif r2eff_estimate == 'MC2000':
>>                 self.assertAlmostEqual(value, 1.54354372)
>>             elif r2eff_estimate == 'chi2':
>>                 self.assertAlmostEqual(value, 1.55967163)
>>         elif model == MODEL_NS_R1RHO_2SITE:
>>             if r2eff_estimate == 'direct':
>>                 self.assertAlmostEqual(value, 1.41359221, 5)
>>             elif r2eff_estimate == 'MC2000':
>>                 self.assertAlmostEqual(value, 1.41321968, 5)
>>             elif r2eff_estimate == 'chi2':
>>                 self.assertAlmostEqual(value, 1.36303129, 5)
>>
>>     elif param == 'r2':
>>         if model == MODEL_NOREX:
>>             if r2eff_estimate == 'direct':
>>                 self.assertAlmostEqual(value, 11.48392439)
>>             elif r2eff_estimate == 'MC2000':
>>                 self.assertAlmostEqual(value, 11.48040934)
>>             elif r2eff_estimate == 'chi2':
>>                 self.assertAlmostEqual(value, 11.47224488)
>>         elif model == MODEL_DPL94:
>>             if r2eff_estimate == 'direct':
>>                 self.assertAlmostEqual(value, 10.15688372, 6)
>>             elif r2eff_estimate == 'MC2000':
>>                 self.assertAlmostEqual(value, 10.16304887, 6)
>>             elif r2eff_estimate == 'chi2':
>>                 self.assertAlmostEqual(value, 9.20037797, 6)
>>         elif model == MODEL_TP02:
>>             if r2eff_estimate == 'direct':
>>                 self.assertAlmostEqual(value, 9.72654896, 6)
>>             elif r2eff_estimate == 'MC2000':
>>                 self.assertAlmostEqual(value, 9.72772726, 6)
>>             elif r2eff_estimate == 'chi2':
>>                 self.assertAlmostEqual(value, 9.53948340, 6)
>>         elif model == MODEL_TAP03:
>>             if r2eff_estimate == 'direct':
>>                 self.assertAlmostEqual(value, 9.72641887, 6)
>>             elif r2eff_estimate == 'MC2000':
>>                 self.assertAlmostEqual(value, 9.72759374, 6)
>>             elif r2eff_estimate == 'chi2':
>>                 self.assertAlmostEqual(value, 9.53926913, 6)
>>         elif model == MODEL_MP05:
>>             if r2eff_estimate == 'direct':
>>                 self.assertAlmostEqual(value, 9.72641723, 6)
>>             elif r2eff_estimate == 'MC2000':
>>                 self.assertAlmostEqual(value, 9.72759220, 6)
>>             elif r2eff_estimate == 'chi2':
>>                 self.assertAlmostEqual(value, 9.53926778, 6)
>>         elif model == MODEL_NS_R1RHO_2SITE:
>>             if r2eff_estimate == 'direct':
>>                 self.assertAlmostEqual(value, 9.34531535, 5)
>>             elif r2eff_estimate == 'MC2000':
>>                 self.assertAlmostEqual(value, 9.34602793, 5)
>>             elif r2eff_estimate == 'chi2':
>>                 self.assertAlmostEqual(value, 9.17631409, 5)
>>
>> # For all other parameters.
>> else:
>> # Get the value.
>> value = getattr(cur_spin, param)
>>
>> # Print value.
>> print("%-10s %-6s %-6s %3.8f" % ("Parameter:", param, "Value:", value))
>>
>> # Compare values.
>> if spin_id == ':52@N':
>> if param == 'phi_ex':
>>     if model == MODEL_DPL94:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 0.07599563)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 0.07561937)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 0.12946061)
>>
>> elif param == 'pA':
>>     if model == MODEL_TP02:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 0.88827040)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 0.88807487)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 0.87746233)
>>     elif model == MODEL_TAP03:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 0.88828922)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 0.88809318)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 0.87747558)
>>     elif model == MODEL_MP05:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 0.88828924)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 0.88809321)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 0.87747562)
>>     elif model == MODEL_NS_R1RHO_2SITE:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 0.94504369, 6)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 0.94496541, 6)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 0.92084707, 6)
>>
>> elif param == 'dw':
>>     if model == MODEL_TP02:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 1.08875840, 6)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 1.08765638, 6)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 1.09753230, 6)
>>     elif model == MODEL_TAP03:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 1.08837238, 6)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 1.08726698, 6)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 1.09708821, 6)
>>     elif model == MODEL_MP05:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 1.08837241, 6)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 1.08726706, 6)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 1.09708832, 6)
>>     elif model == MODEL_NS_R1RHO_2SITE:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 1.56001812, 5)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 1.55833321, 5)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 1.36406712, 5)
>>
>> elif param == 'kex':
>>     if model == MODEL_DPL94:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 4460.43711569, 2)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 4419.03917195, 2)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 6790.22736344, 2)
>>     elif model == MODEL_TP02:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 4921.28602757, 3)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 4904.70144883, 3)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 5146.20306591, 3)
>>     elif model == MODEL_TAP03:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 4926.42963491, 3)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 4909.86877150, 3)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 5152.51105814, 3)
>>     elif model == MODEL_MP05:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 4926.44236315, 3)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 4909.88110195, 3)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 5152.52097111, 3)
>>     elif model == MODEL_NS_R1RHO_2SITE:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 5628.66061488, 2)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 5610.20221435, 2)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 5643.34067090, 2)
>>
>> elif param == 'chi2':
>>     if model == MODEL_NOREX:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 848.42016907, 5)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 3363.95829122, 5)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 5976.49946726, 5)
>>     elif model == MODEL_DPL94:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 179.47041241)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 710.24767560)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 612.72616697, 5)
>>     elif model == MODEL_TP02:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 29.33882530, 6)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 114.47142772, 6)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 250.50838162, 5)
>>     elif model == MODEL_TAP03:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 29.29050673, 6)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 114.27987534)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 250.04050719, 5)
>>     elif model == MODEL_MP05:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 29.29054301, 6)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 114.28002272)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 250.04077478, 5)
>>     elif model == MODEL_NS_R1RHO_2SITE:
>>         if r2eff_estimate == 'direct':
>>             self.assertAlmostEqual(value, 34.44010543, 6)
>>         elif r2eff_estimate == 'MC2000':
>>             self.assertAlmostEqual(value, 134.14368365)
>>         elif r2eff_estimate == 'chi2':
>>             self.assertAlmostEqual(value, 278.55121388, 5)
>>
>> 2014-08-29 9:49 GMT+02:00 Edward d'Auvergne <edw...@nmr-relax.com>:
>>> Hi Troels,
>>>
>>> I've now converted the target_functions.relax_fit.jacobian() function
>>> to be the Jacobian of the chi-squared function rather than the
>>> Jacobian of the exponential function.  This should match your
>>> specific_analyses.relax_disp.estimate_r2eff.func_exp_chi2_grad()
>>> function.  I mixed up the two because the Levenberg-Marquardt
>>> algorithm in minfx requires the Jacobian of the exponential, and it's
>>> been 8 years since I last derived and implemented a Jacobian.
>>>
>>> Regards,
>>>
>>> Edward
>>>
>>>
>>>
>>> On 28 August 2014 21:43,  <tlin...@nmr-relax.com> wrote:
>>>> Author: tlinnet
>>>> Date: Thu Aug 28 21:43:13 2014
>>>> New Revision: 25411
>>>>
>>>> URL: http://svn.gna.org/viewcvs/relax?rev=25411&view=rev
>>>> Log:
>>>> Reverted the logic, that the chi2 Jacobian should be used.
>>>>
>>>> Instead, the direct Jacobian exponential is used instead.
>>>>
>>>> When fitting with the estimated errors from the Direct Jacobian, the 
>>>> results are MUCH better, and comparable
>>>> to 2000 Monte-Carlo simulations.
>>>>
>>>> task #7822(https://gna.org/task/index.php?7822): Implement user function 
>>>> to estimate R2eff and associated errors for exponential curve fitting.
>>>>
>>>> Modified:
>>>>     trunk/specific_analyses/relax_disp/estimate_r2eff.py
>>>>     trunk/test_suite/system_tests/relax_disp.py
>>>>     trunk/user_functions/relax_disp.py
>>>>
>>>> Modified: trunk/specific_analyses/relax_disp/estimate_r2eff.py
>>>> URL: 
>>>> http://svn.gna.org/viewcvs/relax/trunk/specific_analyses/relax_disp/estimate_r2eff.py?rev=25411&r1=25410&r2=25411&view=diff
>>>> ==============================================================================
>>>> --- trunk/specific_analyses/relax_disp/estimate_r2eff.py        (original)
>>>> +++ trunk/specific_analyses/relax_disp/estimate_r2eff.py        Thu Aug 28 
>>>> 21:43:13 2014
>>>> @@ -90,7 +90,7 @@
>>>>      return jacobian_matrix_exp_chi2
>>>>
>>>>
>>>> -def estimate_r2eff_err(chi2_jacobian=True, spin_id=None, epsrel=0.0, 
>>>> verbosity=1):
>>>> +def estimate_r2eff_err(chi2_jacobian=False, spin_id=None, epsrel=0.0, 
>>>> verbosity=1):
>>>>      """This will estimate the R2eff and i0 errors from the covariance 
>>>> matrix Qxx.  Qxx is calculated from the Jacobian matrix and the optimised 
>>>> parameters.
>>>>
>>>>      @keyword chi2_jacobian: If the Jacobian derived from the chi2 
>>>> function, should be used instead of the Jacobian from the exponential 
>>>> function.
>>>>
>>>> Modified: trunk/test_suite/system_tests/relax_disp.py
>>>> URL: 
>>>> http://svn.gna.org/viewcvs/relax/trunk/test_suite/system_tests/relax_disp.py?rev=25411&r1=25410&r2=25411&view=diff
>>>> ==============================================================================
>>>> --- trunk/test_suite/system_tests/relax_disp.py (original)
>>>> +++ trunk/test_suite/system_tests/relax_disp.py Thu Aug 28 21:43:13 2014
>>>> @@ -2744,13 +2744,13 @@
>>>>          self.interpreter.minimise.execute(min_algor='Newton', 
>>>> constraints=False, verbosity=1)
>>>>
>>>>          # Estimate R2eff errors.
>>>> -        
>>>> self.interpreter.relax_disp.r2eff_err_estimate(chi2_jacobian=False)
>>>> +        self.interpreter.relax_disp.r2eff_err_estimate(chi2_jacobian=True)
>>>>
>>>>          # Run the analysis.
>>>>          relax_disp.Relax_disp(pipe_name=ds.pipe_name, 
>>>> pipe_bundle=ds.pipe_bundle, results_dir=result_dir_name, models=MODELS, 
>>>> grid_inc=GRID_INC, mc_sim_num=MC_NUM, modsel=MODSEL)
>>>>
>>>>          # Verify the data.
>>>> -        self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, 
>>>> result_dir_name=result_dir_name, r2eff_estimate='direct')
>>>> +        self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, 
>>>> result_dir_name=result_dir_name, r2eff_estimate='chi2')
>>>>
>>>>
>>>>      def test_estimate_r2eff_err_auto(self):
>>>> @@ -2849,7 +2849,7 @@
>>>>          relax_disp.Relax_disp(pipe_name=pipe_name, 
>>>> pipe_bundle=pipe_bundle, results_dir=result_dir_name, models=MODELS, 
>>>> grid_inc=GRID_INC, mc_sim_num=MC_NUM, exp_mc_sim_num=EXP_MC_NUM, 
>>>> modsel=MODSEL, r1_fit=r1_fit)
>>>>
>>>>          # Verify the data.
>>>> -        self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, 
>>>> result_dir_name=result_dir_name, r2eff_estimate='chi2')
>>>> +        self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, 
>>>> result_dir_name=result_dir_name, r2eff_estimate='direct')
>>>>
>>>>
>>>>      def test_estimate_r2eff_err_methods(self):
>>>>
>>>> Modified: trunk/user_functions/relax_disp.py
>>>> URL: 
>>>> http://svn.gna.org/viewcvs/relax/trunk/user_functions/relax_disp.py?rev=25411&r1=25410&r2=25411&view=diff
>>>> ==============================================================================
>>>> --- trunk/user_functions/relax_disp.py  (original)
>>>> +++ trunk/user_functions/relax_disp.py  Thu Aug 28 21:43:13 2014
>>>> @@ -636,7 +636,7 @@
>>>>  uf.title_short = "Estimate R2eff errors."
>>>>  uf.add_keyarg(
>>>>      name = "chi2_jacobian",
>>>> -    default = True,
>>>> +    default = False,
>>>>      py_type = "bool",
>>>>      desc_short = "use of chi2 Jacobian",
>>>>      desc = "If the Jacobian derived from the chi2 function, should be 
>>>> used instead of the Jacobian from the exponential function."
>>>>
>>>>
>>>> _______________________________________________
>>>> relax (http://www.nmr-relax.com)
>>>>
>>>> This is the relax-commits mailing list
>>>> relax-comm...@gna.org
>>>>
>>>> To unsubscribe from this list, get a password
>>>> reminder, or change your subscription options,
>>>> visit the list information page at
>>>> https://mail.gna.org/listinfo/relax-commits
>>>
>>> _______________________________________________
>>> relax (http://www.nmr-relax.com)
>>>
>>> This is the relax-devel mailing list
>>> relax-devel@gna.org
>>>
>>> To unsubscribe from this list, get a password
>>> reminder, or change your subscription options,
>>> visit the list information page at
>>> https://mail.gna.org/listinfo/relax-devel

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
relax-devel@gna.org

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to