zhengruifeng edited a comment on pull request #28458:
URL: https://github.com/apache/spark/pull/28458#issuecomment-624427337


   performace test on **sparse dataset**: the first 10,000 instances of 
`webspam_wc_normalized_trigram`
   
   code:
   ```scala
   val df = spark.read.option("numFeatures", 
"8289919").format("libsvm").load("/data1/Datasets/webspam/webspam_wc_normalized_trigram.svm.10k").withColumn("label",
 (col("label")+1)/2)
   df.persist(StorageLevel.MEMORY_AND_DISK)
   df.count
   
   val lr = new LogisticRegression().setBlockSize(1).setMaxIter(10)
   lr.fit(df)
   
   val results = Seq(1, 4, 16, 64, 256, 1024, 4096).map { size => val start = 
System.currentTimeMillis; val model = lr.setBlockSize(size).fit(df); val end = 
System.currentTimeMillis; (size, model.coefficients, end - start) }
   ```
   
   results:
   ```
   scala> results.map(_._3)
   res17: Seq[Long] = List(33948, 425923, 129811, 56288, 47587, 42816, 39809)
   
   
   scala> results.map(_._2).foreach(coef => println(coef.toString.take(100)))
   
(8289919,[549219,551719,592137,592138,592141,592154,592160,592162,592163,592164,592166,592167,592168
   
(8289919,[549219,551719,592137,592138,592141,592154,592160,592162,592163,592164,592166,592167,592168
   
(8289919,[549219,551719,592137,592138,592141,592154,592160,592162,592163,592164,592166,592167,592168
   
(8289919,[549219,551719,592137,592138,592141,592154,592160,592162,592163,592164,592166,592167,592168
   
(8289919,[549219,551719,592137,592138,592141,592154,592160,592162,592163,592164,592166,592167,592168
   
(8289919,[549219,551719,592137,592138,592141,592154,592160,592162,592163,592164,592166,592167,592168
   
(8289919,[549219,551719,592137,592138,592141,592154,592160,592162,592163,592164,592166,592167,592168
   
   scala> results.map(_._2).foreach(coef => 
println(coef.toString.takeRight(100)))
   
87,-1188.1053920127556,335.5565308836645,-135.79302172669907,849.0515530033497,-27.040836637047736])
   
91,-1188.105392012755,335.55653088366444,-135.79302172669907,849.0515530033497,-27.040836637047736])
   
9,-1188.1053920127551,335.55653088366444,-135.79302172669904,849.0515530033495,-27.040836637047725])
   
94,-1188.1053920127556,335.55653088366444,-135.79302172669904,849.0515530033495,-27.04083663704773])
   
1,-1188.1053920127551,335.55653088366444,-135.79302172669904,849.0515530033493,-27.040836637047722])
   
5,-1188.1053920127556,335.55653088366444,-135.79302172669904,849.0515530033495,-27.040836637047736])
   
29,-1188.105392012756,335.55653088366444,-135.79302172669904,849.0515530033495,-27.040836637047736])
   ```
   
   **blockSize==1**
   
![lr_sparse_1](https://user-images.githubusercontent.com/7322292/81136686-e8acfb00-8f8e-11ea-9267-cf847b37eb81.png)
   
   **blockSize=16**
   
![lr_sparse_16](https://user-images.githubusercontent.com/7322292/81136711-f19dcc80-8f8e-11ea-990a-7b8fe32d81d9.png)
   
   
   
   test with **Master**:
   ```
   import org.apache.spark.ml.classification._
   import org.apache.spark.storage.StorageLevel
   
   val df = spark.read.option("numFeatures", 
"8289919").format("libsvm").load("/data1/Datasets/webspam/webspam_wc_normalized_trigram.svm.10k").withColumn("label",
 (col("label")+1)/2)
   df.persist(StorageLevel.MEMORY_AND_DISK)
   df.count
   
   val lr = new LogisticRegression().setMaxIter(10)
   lr.fit(df)
   
   val start = System.currentTimeMillis; val model = lr.setMaxIter(10).fit(df); 
val end = System.currentTimeMillis; end - start
   
   
   
   scala> val start = System.currentTimeMillis; val model = 
lr.setMaxIter(10).fit(df); val end = System.currentTimeMillis; end - start
   start: Long = 1588735447883                                                  
   
   model: org.apache.spark.ml.classification.LogisticRegressionModel = 
LogisticRegressionModel: uid=logreg_99d29a0ecc13, numClasses=2, 
numFeatures=8289919
   end: Long = 1588735483170
   res3: Long = 35287
   ```
   In this PR, when blockSize==1, the duration is 33948, so there will be no 
performance regression on sparse datasets.
   


----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to