Github user liancheng commented on a diff in the pull request:

    https://github.com/apache/spark/pull/5279#discussion_r27488225
  
    --- Diff: 
sql/catalyst/src/main/scala/org/apache/spark/sql/types/DataTypeConversions.scala
 ---
    @@ -21,23 +21,20 @@ import java.text.SimpleDateFormat
     
     import org.apache.spark.sql.Row
     import org.apache.spark.sql.catalyst.ScalaReflection
    -import org.apache.spark.sql.catalyst.expressions.GenericMutableRow
    +import org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema
     
     
     protected[sql] object DataTypeConversions {
     
       def productToRow(product: Product, schema: StructType): Row = {
    -    val mutableRow = new GenericMutableRow(product.productArity)
    -    val schemaFields = schema.fields.toArray
    -
    +    val ar = new Array[Any](schema.length)
         var i = 0
    -    while (i < mutableRow.length) {
    -      mutableRow(i) =
    -        ScalaReflection.convertToCatalyst(product.productElement(i), 
schemaFields(i).dataType)
    +    while (i < schema.length) {
    +      ar(i) =
    +        ScalaReflection.convertToCatalyst(product.productElement(i), 
schema.fields(i).dataType)
           i += 1
         }
    -
    -    mutableRow
    +    new GenericRowWithSchema(ar, schema)
    --- End diff --
    
    I agree. The original version uses a mutable row mostly because of the 
updates in the while loop I guess.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to