HeartSaVioR commented on pull request #30033:
URL: https://github.com/apache/spark/pull/30033#issuecomment-708046686


   Btw that was hard to debug and required me to deal with Spark test code, as 
we get nothing from the error message on the case when all columns are matched. 
(In other words, considered as unresolved due to the type incompatibility on 
write between same column.) We can't get the information about the reason why 
the operator is considered as unresolved even we turn on TRACE log.
   
   ```
   org.apache.spark.sql.AnalysisException: unresolved operator 'AppendData 
RelationV2[col_b#225, col_i#226, col_l#227L, col_f#228, col_d#229, col_da#230, 
col_ts_tz#231, col_s#232, col_fi#233, col_bi#234, col_de_1#235, col_de_2#236, 
col_de_3#237, col_st#238, col_li#239, col_ma#240] 
table_convert_read_all_types_5, Map(path -> table_convert_read_all_types_5), 
true;;
   'AppendData RelationV2[col_b#225, col_i#226, col_l#227L, col_f#228, 
col_d#229, col_da#230, col_ts_tz#231, col_s#232, col_fi#233, col_bi#234, 
col_de_1#235, col_de_2#236, col_de_3#237, col_st#238, col_li#239, col_ma#240] 
table_convert_read_all_types_5, Map(path -> table_convert_read_all_types_5), 
true
   +- Project [col_b#12, col_i#13, col_l#14L, col_f#15, col_d#16, col_da#49, 
col_ts_tz#63, col_s#17, col_fi#18, col_bi#19, col_de_1#78, col_de_2#94, 
col_de_3#111, col_st#21, col_li#22, col_ma#23]
      +- Project [col_b#12, col_i#13, col_l#14L, col_f#15, col_d#16, col_s#17, 
col_fi#18, col_bi#19, col_st#21, col_li#22, col_ma#23, col_da#49, col_ts_tz#63, 
col_de_1#78, col_de_2#94, col_de_3#111]
         +- Project [col_b#12, col_i#13, col_l#14L, col_f#15, col_d#16, 
col_s#17, col_fi#18, col_bi#19, col_de#20, col_st#21, col_li#22, col_ma#23, 
col_da#49, col_ts_tz#63, col_de_1#78, col_de_2#94, cast(col_de#20 as 
decimal(38,10)) AS col_de_3#111]
            +- Project [col_b#12, col_i#13, col_l#14L, col_f#15, col_d#16, 
col_s#17, col_fi#18, col_bi#19, col_de#20, col_st#21, col_li#22, col_ma#23, 
col_da#49, col_ts_tz#63, col_de_1#78, cast(col_de#20 as decimal(11,2)) AS 
col_de_2#94]
               +- Project [col_b#12, col_i#13, col_l#14L, col_f#15, col_d#16, 
col_s#17, col_fi#18, col_bi#19, col_de#20, col_st#21, col_li#22, col_ma#23, 
col_da#49, col_ts_tz#63, cast(col_de#20 as decimal(9,0)) AS col_de_1#78]
                  +- Project [col_b#12, col_i#13, col_l#14L, col_f#15, 
col_d#16, col_s#17, col_fi#18, col_bi#19, col_de#20, col_st#21, col_li#22, 
col_ma#23, col_da#49, now() AS col_ts_tz#63]
                     +- Project [col_b#12, col_i#13, col_l#14L, col_f#15, 
col_d#16, col_s#17, col_fi#18, col_bi#19, col_de#20, col_st#21, col_li#22, 
col_ma#23, current_date(Some(Asia/Seoul)) AS col_da#49]
                        +- LocalRelation [col_b#12, col_i#13, col_l#14L, 
col_f#15, col_d#16, col_s#17, col_fi#18, col_bi#19, col_de#20, col_st#21, 
col_li#22, col_ma#23]
   
     at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis.failAnalysis(CheckAnalysis.scala:49)
     at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis.failAnalysis$(CheckAnalysis.scala:48)
     at 
org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:130)
     at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis.$anonfun$checkAnalysis$43(CheckAnalysis.scala:666)
     at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis.$anonfun$checkAnalysis$43$adapted(CheckAnalysis.scala:664)
     at 
org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:177)
     at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis(CheckAnalysis.scala:664)
     at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis$(CheckAnalysis.scala:89)
     at 
org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:130)
     at 
org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:156)
     at 
org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:201)
     at 
org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:153)
     at 
org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:68)
     at 
org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111)
     at 
org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:133)
     at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
     at 
org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:133)
     at 
org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:68)
     at 
org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:66)
     at 
org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:58)
     at 
org.apache.spark.sql.execution.QueryExecution.$anonfun$withCachedData$1(QueryExecution.scala:72)
     at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
     at 
org.apache.spark.sql.execution.QueryExecution.withCachedData$lzycompute(QueryExecution.scala:71)
     at 
org.apache.spark.sql.execution.QueryExecution.withCachedData(QueryExecution.scala:71)
     at 
org.apache.spark.sql.execution.QueryExecution.$anonfun$optimizedPlan$1(QueryExecution.scala:82)
     at 
org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111)
     at 
org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:133)
     at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
     at 
org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:133)
     at 
org.apache.spark.sql.execution.QueryExecution.optimizedPlan$lzycompute(QueryExecution.scala:82)
     at 
org.apache.spark.sql.execution.QueryExecution.optimizedPlan(QueryExecution.scala:79)
     at 
org.apache.spark.sql.execution.QueryExecution.assertOptimized(QueryExecution.scala:85)
     at 
org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:103)
     at 
org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:100)
     at 
org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:98)
     at 
org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
     at 
org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:87)
     at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
     at 
org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
     at 
org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:963)
     at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:354)
     at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:288)
     ... 47 elided
   ```


----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to