zhengruifeng commented on a change in pull request #31588:
URL: https://github.com/apache/spark/pull/31588#discussion_r585441622



##########
File path: mllib/src/main/scala/org/apache/spark/ml/feature/VectorSlicer.scala
##########
@@ -110,22 +110,21 @@ final class VectorSlicer @Since("1.5.0") (@Since("1.5.0") 
override val uid: Stri
     }
 
     // Prepare output attributes
-    val inds = getSelectedFeatureIndices(dataset.schema)
-    val selectedAttrs = inputAttr.attributes.map { attrs =>
-      inds.map(index => attrs(index))
-    }
+    val selectedIndices = getSelectedFeatureIndices(dataset.schema)
+    val selectedAttrs = inputAttr.attributes.map { attrs => 
selectedIndices.map(attrs.apply) }
     val outputAttr = selectedAttrs match {
       case Some(attrs) => new AttributeGroup($(outputCol), attrs)
-      case None => new AttributeGroup($(outputCol), inds.length)
+      case None => new AttributeGroup($(outputCol), selectedIndices.length)
     }
 
-    // Select features
+    val sorted = selectedIndices.length > 1 && 
selectedIndices.sliding(2).forall(t => t(1) > t(0))

Review comment:
       > I just have a moderately strong preference for not putting this logic 
in N callers if possible.
   
   I am not sure how to impl it.
   
   > Is the runtime check for sortedness just too expensive and/or not reusable 
in other functions?
   
   Checking for sortedness maybe O(n), mayebe too expensive. The sortedness is 
only used in slicing for now.




----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to