viirya commented on a change in pull request #33695:
URL: https://github.com/apache/spark/pull/33695#discussion_r688857071
##########
File path:
sql/core/src/main/java/org/apache/spark/sql/execution/datasources/parquet/ParquetReadState.java
##########
@@ -131,9 +157,10 @@ long currentRangeEnd() {
* Advance the current offset and rowId to the new values.
*/
void advanceOffsetAndRowId(int newOffset, long newRowId) {
- valuesToReadInBatch -= (newOffset - offset);
+ rowsToReadInBatch -= (newOffset - levelOffset);
Review comment:
Hmm, for repeated values, is offset difference the same as row
difference? I think one row could contain many values (offsets), no?
##########
File path:
sql/core/src/main/java/org/apache/spark/sql/execution/datasources/parquet/ParquetColumn.java
##########
@@ -0,0 +1,239 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.sql.execution.datasources.parquet;
+
+import org.apache.spark.memory.MemoryMode;
+import org.apache.spark.sql.execution.vectorized.OffHeapColumnVector;
+import org.apache.spark.sql.execution.vectorized.OnHeapColumnVector;
+import org.apache.spark.sql.execution.vectorized.WritableColumnVector;
+import org.apache.spark.sql.types.ArrayType;
+import org.apache.spark.sql.types.DataType;
+import org.apache.spark.sql.types.DataTypes;
+import org.apache.spark.sql.types.MapType;
+import org.apache.spark.sql.types.StructType;
+
+import java.util.ArrayList;
+import java.util.List;
+
+/**
+ * Contains necessary information representing a Parquet column, either of
primitive or nested type.
+ */
+final class ParquetColumn {
+ private final ParquetTypeInfo columnInfo;
+ private final List<ParquetColumn> children;
+ private final WritableColumnVector vector;
+
+ /**
+ * repetition & definition levels
+ * these are allocated only for leaf columns; for non-leaf columns, they
simply maintain
+ * references to that of the former.
+ */
+ private WritableColumnVector repetitionLevels;
+ private WritableColumnVector definitionLevels;
+
+ /** whether this column is primitive (i.e., leaf column) */
+ private final boolean isPrimitive;
+
+ /** reader for this column - only set if 'isPrimitive' is true */
+ private VectorizedColumnReader columnReader;
+
+ ParquetColumn(
+ ParquetTypeInfo columnInfo,
+ WritableColumnVector vector,
+ int capacity,
+ MemoryMode memoryMode) {
+ DataType sparkType = columnInfo.sparkType();
+ if (!sparkType.sameType(vector.dataType())) {
+ throw new IllegalArgumentException("Spark type: " +
columnInfo.sparkType() +
Review comment:
columnInfo.sparkType() -> sparkType?
##########
File path:
sql/core/src/main/java/org/apache/spark/sql/execution/datasources/parquet/ParquetColumn.java
##########
@@ -0,0 +1,239 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.sql.execution.datasources.parquet;
+
+import org.apache.spark.memory.MemoryMode;
+import org.apache.spark.sql.execution.vectorized.OffHeapColumnVector;
+import org.apache.spark.sql.execution.vectorized.OnHeapColumnVector;
+import org.apache.spark.sql.execution.vectorized.WritableColumnVector;
+import org.apache.spark.sql.types.ArrayType;
+import org.apache.spark.sql.types.DataType;
+import org.apache.spark.sql.types.DataTypes;
+import org.apache.spark.sql.types.MapType;
+import org.apache.spark.sql.types.StructType;
+
+import java.util.ArrayList;
+import java.util.List;
+
+/**
+ * Contains necessary information representing a Parquet column, either of
primitive or nested type.
+ */
+final class ParquetColumn {
+ private final ParquetTypeInfo columnInfo;
+ private final List<ParquetColumn> children;
+ private final WritableColumnVector vector;
+
+ /**
+ * repetition & definition levels
+ * these are allocated only for leaf columns; for non-leaf columns, they
simply maintain
+ * references to that of the former.
+ */
+ private WritableColumnVector repetitionLevels;
+ private WritableColumnVector definitionLevels;
+
+ /** whether this column is primitive (i.e., leaf column) */
+ private final boolean isPrimitive;
+
+ /** reader for this column - only set if 'isPrimitive' is true */
+ private VectorizedColumnReader columnReader;
+
+ ParquetColumn(
+ ParquetTypeInfo columnInfo,
+ WritableColumnVector vector,
+ int capacity,
+ MemoryMode memoryMode) {
+ DataType sparkType = columnInfo.sparkType();
+ if (!sparkType.sameType(vector.dataType())) {
+ throw new IllegalArgumentException("Spark type: " +
columnInfo.sparkType() +
+ " doesn't match the type: " + vector.dataType() + " in column vector");
+ }
+ this.columnInfo = columnInfo;
+ this.vector = vector;
+ this.children = new ArrayList<>();
+ this.isPrimitive = columnInfo.isPrimitive();
+
+ if (isPrimitive) {
+ repetitionLevels = allocateLevelsVector(capacity, memoryMode);
+ definitionLevels = allocateLevelsVector(capacity, memoryMode);
+ } else {
+ ParquetGroupTypeInfo groupInfo = (ParquetGroupTypeInfo) columnInfo;
+ if (sparkType instanceof ArrayType) {
+ ParquetColumn childState = new
ParquetColumn(groupInfo.children().apply(0),
+ vector.getChild(0), capacity, memoryMode);
+ this.repetitionLevels = childState.repetitionLevels;
+ this.definitionLevels = childState.definitionLevels;
+ children.add(childState);
+ } else if (sparkType instanceof MapType) {
+ ParquetColumn childState = new
ParquetColumn(groupInfo.children().apply(0),
+ vector.getChild(0), capacity, memoryMode);
+ this.repetitionLevels = childState.repetitionLevels;
+ this.definitionLevels = childState.definitionLevels;
+ children.add(childState);
+ children.add(new ParquetColumn(groupInfo.children().apply(1),
vector.getChild(1),
+ capacity, memoryMode));
+ } else if (sparkType instanceof StructType) {
+ for (int i = 0; i < groupInfo.children().length(); i++) {
+ ParquetColumn childState = new
ParquetColumn(groupInfo.children().apply(i),
+ vector.getChild(i), capacity, memoryMode);
+ this.repetitionLevels = childState.repetitionLevels;
+ this.definitionLevels = childState.definitionLevels;
+ children.add(childState);
+ }
+ }
+ }
+ }
+
+ /**
+ * Get all the leaf columns in depth-first order.
+ */
+ List<ParquetColumn> getLeaves() {
+ List<ParquetColumn> result = new ArrayList<>();
+ getLeavesHelper(this, result);
+ return result;
+ }
+
+ /**
+ * Assemble this column and calculate collection offsets recursively.
+ * This is a no-op for primitive columns.
+ */
+ void assemble() {
+ DataType type = columnInfo.sparkType();
+ if (type instanceof ArrayType || type instanceof MapType) {
+ for (ParquetColumn child : children) {
+ child.assemble();
+ }
+ calculateCollectionOffsets();
+ } else if (type instanceof StructType) {
+ for (ParquetColumn child : children) {
+ child.assemble();
+ }
+ calculateStructOffsets();
+ }
+ }
+
+ ParquetTypeInfo getColumnInfo() {
+ return this.columnInfo;
+ }
+
+ WritableColumnVector getValueVector() {
+ return this.vector;
+ }
+
+ WritableColumnVector getRepetitionLevelVector() {
+ return this.repetitionLevels;
+ }
+
+ WritableColumnVector getDefinitionLevelVector() {
+ return this.definitionLevels;
+ }
+
+ VectorizedColumnReader getColumnReader() {
+ return this.columnReader;
+ }
+
+ void setColumnReader(VectorizedColumnReader reader) {
+ if (!isPrimitive) {
+ throw new IllegalStateException("can't set reader for non-primitive
column");
+ }
+ this.columnReader = reader;
+ }
+
+ private static void getLeavesHelper(ParquetColumn column,
List<ParquetColumn> coll) {
+ if (column.isPrimitive) {
+ coll.add(column);
+ } else {
+ for (ParquetColumn childCol : column.children) {
+ getLeavesHelper(childCol, coll);
+ }
+ }
+ }
+
+ private void calculateCollectionOffsets() {
+ int maxDefinitionLevel = columnInfo.definitionLevel();
+ int maxElementRepetitionLevel = columnInfo.repetitionLevel();
+
+ // `i` is the index over all leaf elements of this array, while `offset`
is the index over
+ // all top-level elements of this array.
+ for (int i = 0, rowId = 0, offset = 0; i <
definitionLevels.getElementsAppended();
+ i = getNextCollectionStart(maxElementRepetitionLevel, i), rowId++) {
+ vector.reserve(rowId + 1);
+ int definitionLevel = definitionLevels.getInt(i);
+ if (definitionLevel == maxDefinitionLevel - 1) {
+ // the collection is null
+ vector.putNull(rowId);
+ } else if (definitionLevel == maxDefinitionLevel) {
+ // collection is defined but empty
+ vector.putNotNull(rowId);
+ vector.putArray(rowId, offset, 0);
+ } else {
+ // collection is defined and non-empty: find out how many top element
there is till the
+ // start of the next array.
+ vector.putNotNull(rowId);
+ int length = getCollectionSize(maxElementRepetitionLevel, i + 1);
+ vector.putArray(rowId, offset, length);
+ offset += length;
+ }
+ }
+ }
+
+ private void calculateStructOffsets() {
+ int maxDefinitionLevel = columnInfo.definitionLevel();
+ vector.reserve(definitionLevels.getElementsAppended());
+ for (int i = 0, rowId = 0; i < definitionLevels.getElementsAppended();
i++, rowId++) {
Review comment:
BTW, isn't `rowId` as same as `i` in this loop?
##########
File path:
sql/core/src/main/java/org/apache/spark/sql/execution/datasources/parquet/ParquetReadState.java
##########
@@ -131,9 +157,10 @@ long currentRangeEnd() {
* Advance the current offset and rowId to the new values.
*/
void advanceOffsetAndRowId(int newOffset, long newRowId) {
- valuesToReadInBatch -= (newOffset - offset);
+ rowsToReadInBatch -= (newOffset - levelOffset);
valuesToReadInPage -= (newRowId - rowId);
- offset = newOffset;
+ levelOffset = newOffset;
+ valueOffset = newOffset;
Review comment:
So we always advance same range to level and value offsets? But I think
they are not always the same, right?
##########
File path:
sql/core/src/main/java/org/apache/spark/sql/execution/datasources/parquet/ParquetColumn.java
##########
@@ -0,0 +1,239 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.sql.execution.datasources.parquet;
+
+import org.apache.spark.memory.MemoryMode;
+import org.apache.spark.sql.execution.vectorized.OffHeapColumnVector;
+import org.apache.spark.sql.execution.vectorized.OnHeapColumnVector;
+import org.apache.spark.sql.execution.vectorized.WritableColumnVector;
+import org.apache.spark.sql.types.ArrayType;
+import org.apache.spark.sql.types.DataType;
+import org.apache.spark.sql.types.DataTypes;
+import org.apache.spark.sql.types.MapType;
+import org.apache.spark.sql.types.StructType;
+
+import java.util.ArrayList;
+import java.util.List;
+
+/**
+ * Contains necessary information representing a Parquet column, either of
primitive or nested type.
+ */
+final class ParquetColumn {
+ private final ParquetTypeInfo columnInfo;
+ private final List<ParquetColumn> children;
+ private final WritableColumnVector vector;
+
+ /**
+ * repetition & definition levels
+ * these are allocated only for leaf columns; for non-leaf columns, they
simply maintain
+ * references to that of the former.
+ */
+ private WritableColumnVector repetitionLevels;
+ private WritableColumnVector definitionLevels;
+
+ /** whether this column is primitive (i.e., leaf column) */
+ private final boolean isPrimitive;
+
+ /** reader for this column - only set if 'isPrimitive' is true */
+ private VectorizedColumnReader columnReader;
+
+ ParquetColumn(
+ ParquetTypeInfo columnInfo,
+ WritableColumnVector vector,
+ int capacity,
+ MemoryMode memoryMode) {
+ DataType sparkType = columnInfo.sparkType();
+ if (!sparkType.sameType(vector.dataType())) {
+ throw new IllegalArgumentException("Spark type: " +
columnInfo.sparkType() +
+ " doesn't match the type: " + vector.dataType() + " in column vector");
+ }
+ this.columnInfo = columnInfo;
+ this.vector = vector;
+ this.children = new ArrayList<>();
+ this.isPrimitive = columnInfo.isPrimitive();
+
+ if (isPrimitive) {
+ repetitionLevels = allocateLevelsVector(capacity, memoryMode);
+ definitionLevels = allocateLevelsVector(capacity, memoryMode);
+ } else {
+ ParquetGroupTypeInfo groupInfo = (ParquetGroupTypeInfo) columnInfo;
+ if (sparkType instanceof ArrayType) {
+ ParquetColumn childState = new
ParquetColumn(groupInfo.children().apply(0),
+ vector.getChild(0), capacity, memoryMode);
+ this.repetitionLevels = childState.repetitionLevels;
+ this.definitionLevels = childState.definitionLevels;
+ children.add(childState);
+ } else if (sparkType instanceof MapType) {
+ ParquetColumn childState = new
ParquetColumn(groupInfo.children().apply(0),
+ vector.getChild(0), capacity, memoryMode);
+ this.repetitionLevels = childState.repetitionLevels;
+ this.definitionLevels = childState.definitionLevels;
+ children.add(childState);
+ children.add(new ParquetColumn(groupInfo.children().apply(1),
vector.getChild(1),
+ capacity, memoryMode));
+ } else if (sparkType instanceof StructType) {
+ for (int i = 0; i < groupInfo.children().length(); i++) {
+ ParquetColumn childState = new
ParquetColumn(groupInfo.children().apply(i),
+ vector.getChild(i), capacity, memoryMode);
+ this.repetitionLevels = childState.repetitionLevels;
+ this.definitionLevels = childState.definitionLevels;
+ children.add(childState);
+ }
+ }
+ }
+ }
+
+ /**
+ * Get all the leaf columns in depth-first order.
+ */
+ List<ParquetColumn> getLeaves() {
+ List<ParquetColumn> result = new ArrayList<>();
+ getLeavesHelper(this, result);
+ return result;
+ }
+
+ /**
+ * Assemble this column and calculate collection offsets recursively.
+ * This is a no-op for primitive columns.
+ */
+ void assemble() {
+ DataType type = columnInfo.sparkType();
+ if (type instanceof ArrayType || type instanceof MapType) {
+ for (ParquetColumn child : children) {
+ child.assemble();
+ }
+ calculateCollectionOffsets();
+ } else if (type instanceof StructType) {
+ for (ParquetColumn child : children) {
+ child.assemble();
+ }
+ calculateStructOffsets();
+ }
+ }
+
+ ParquetTypeInfo getColumnInfo() {
+ return this.columnInfo;
+ }
+
+ WritableColumnVector getValueVector() {
+ return this.vector;
+ }
+
+ WritableColumnVector getRepetitionLevelVector() {
+ return this.repetitionLevels;
+ }
+
+ WritableColumnVector getDefinitionLevelVector() {
+ return this.definitionLevels;
+ }
+
+ VectorizedColumnReader getColumnReader() {
+ return this.columnReader;
+ }
+
+ void setColumnReader(VectorizedColumnReader reader) {
+ if (!isPrimitive) {
+ throw new IllegalStateException("can't set reader for non-primitive
column");
+ }
+ this.columnReader = reader;
+ }
+
+ private static void getLeavesHelper(ParquetColumn column,
List<ParquetColumn> coll) {
+ if (column.isPrimitive) {
+ coll.add(column);
+ } else {
+ for (ParquetColumn childCol : column.children) {
+ getLeavesHelper(childCol, coll);
+ }
+ }
+ }
+
+ private void calculateCollectionOffsets() {
+ int maxDefinitionLevel = columnInfo.definitionLevel();
+ int maxElementRepetitionLevel = columnInfo.repetitionLevel();
+
+ // `i` is the index over all leaf elements of this array, while `offset`
is the index over
+ // all top-level elements of this array.
+ for (int i = 0, rowId = 0, offset = 0; i <
definitionLevels.getElementsAppended();
+ i = getNextCollectionStart(maxElementRepetitionLevel, i), rowId++) {
+ vector.reserve(rowId + 1);
+ int definitionLevel = definitionLevels.getInt(i);
+ if (definitionLevel == maxDefinitionLevel - 1) {
+ // the collection is null
+ vector.putNull(rowId);
+ } else if (definitionLevel == maxDefinitionLevel) {
+ // collection is defined but empty
+ vector.putNotNull(rowId);
+ vector.putArray(rowId, offset, 0);
+ } else {
+ // collection is defined and non-empty: find out how many top element
there is till the
+ // start of the next array.
+ vector.putNotNull(rowId);
+ int length = getCollectionSize(maxElementRepetitionLevel, i + 1);
+ vector.putArray(rowId, offset, length);
+ offset += length;
+ }
+ }
+ }
+
+ private void calculateStructOffsets() {
+ int maxDefinitionLevel = columnInfo.definitionLevel();
+ vector.reserve(definitionLevels.getElementsAppended());
+ for (int i = 0, rowId = 0; i < definitionLevels.getElementsAppended();
i++, rowId++) {
Review comment:
nit: definitionLevels.getElementsAppended() is called twice.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]