Github user harsha2010 commented on a diff in the pull request:
https://github.com/apache/spark/pull/5830#discussion_r29901844
--- Diff: mllib/src/main/scala/org/apache/spark/ml/reduction/OneVsAll.scala
---
@@ -0,0 +1,165 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.ml.reduction
+
+import scala.language.existentials
+import scala.reflect.ClassTag
+
+import org.apache.spark.annotation.{AlphaComponent, Experimental}
+import org.apache.spark.ml.attribute.BinaryAttribute
+import org.apache.spark.ml.classification.{ClassificationModel,
Classifier, ClassifierParams}
+import org.apache.spark.ml.impl.estimator.{PredictionModel, Predictor}
+import org.apache.spark.ml.param.ParamMap
+import org.apache.spark.ml.util.{MetadataUtils, SchemaUtils}
+import org.apache.spark.mllib.linalg.Vector
+import org.apache.spark.rdd.RDD
+import org.apache.spark.sql.{DataFrame, Row}
+import org.apache.spark.sql.functions._
+import org.apache.spark.sql.types._
+import org.apache.spark.storage.StorageLevel
+
+/**
+ * Model produced by [[OneVsAll]].
+ *
+ * @param parent
+ * @param models the binary classification models for reduction.
+ */
+@AlphaComponent
+class OneVsAllModel[
+ FeaturesType,
+ E <: Classifier[FeaturesType, E, M],
+ M <: ClassificationModel[FeaturesType, M]](
+ override val parent: OneVsAll[FeaturesType, E, M],
+ val models: Array[M])
+ extends PredictionModel[FeaturesType, OneVsAllModel[FeaturesType, E, M]]
+ with ClassifierParams {
+
+ override protected def featuresDataType: DataType =
parent.featuresDataType
+
+ override def transformSchema(schema: StructType): StructType = {
+ validateAndTransformSchema(schema, fitting = false, featuresDataType)
+ }
+
+ override def transform(dataset: DataFrame): DataFrame = {
+ // Check schema
+ val parentSchema = dataset.schema
+ transformSchema(parentSchema, logging = true)
+ val sqlCtx = dataset.sqlContext
+
+ // score each model on every data point and pick the model with
highest score
+ // TODO: Use DataFrame expressions to leverage performance here
+ val predictions = models.zipWithIndex.par.map { case (model, index) =>
+ val output = model.transform(dataset)
+ output.select($(rawPredictionCol)).map { case Row(p: Vector) =>
List((index, p(1))) }
+ }.reduce[RDD[List[(Int, Double)]]] { case (x, y) =>
+ x.zip(y).map { case ((a, b)) =>
+ a ++ b
+ }
+ }.map(_.maxBy(_._2))
+
+ // ensure that we pass through columns that are part of the original
dataset.
+ val results = dataset.select(col("*")).rdd.zip(predictions).map { case
(row, (label, _)) =>
+ Row.fromSeq(row.toSeq ++ List(label.toDouble))
+ }
+
+ // the output schema should retain all input fields and add prediction
column.
+ val outputSchema = SchemaUtils.appendColumn(parentSchema,
$(predictionCol), DoubleType)
+ sqlCtx.createDataFrame(results, outputSchema)
+ }
+
+ def predict(features: FeaturesType): Double = {
+ throw new UnsupportedOperationException("Ensemble Classifier does not
support predict," +
+ " use transform instead")
+ }
+}
+
+/**
+ * :: Experimental ::
+ *
+ * Reduction of Multiclass Classification to Binary Classification.
+ * Performs reduction using one against all strategy.
+ * For a multiclass classification with k classes, train k models (one per
class).
+ * Each example is scored against all k models and the model with highest
score
+ * is picked to label the example.
+ *
+ * Classifier parameters like featuresCol, predictionCol and
rawPredictionCol are
+ * set directly on the OneVsRest and are ignored on the underlying
classifier.
+ *
+ */
+@Experimental
+class OneVsAll[
+ FeaturesType,
+ E <: Classifier[FeaturesType, E, M],
+ M <: ClassificationModel[FeaturesType, M]]
+ (val classifier: Classifier[FeaturesType, E, M])
+ (implicit m: ClassTag[M])
+ extends Predictor[FeaturesType, OneVsAll[FeaturesType, E, M],
OneVsAllModel[FeaturesType, E, M]]
+ with ClassifierParams {
--- End diff --
All the base classifier parameters are being set by OneVsAll.
It needs access to rawPredictionCol for example and needs to be able to
set/ read classifier params instead of just params.
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]