Github user jkbradley commented on a diff in the pull request:
https://github.com/apache/spark/pull/5830#discussion_r30092226
--- Diff:
mllib/src/test/java/org/apache/spark/ml/reduction/JavaOneVsRestSuite.java ---
@@ -0,0 +1,86 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.ml.reduction;
+
+import java.io.Serializable;
+import java.util.List;
+
+import org.junit.After;
+import org.junit.Before;
+import org.junit.Test;
+
+import static scala.collection.JavaConversions.seqAsJavaList;
+
+import org.apache.spark.api.java.JavaRDD;
+import org.apache.spark.api.java.JavaSparkContext;
+import org.apache.spark.ml.classification.LogisticRegression;
+import static
org.apache.spark.mllib.classification.LogisticRegressionSuite.generateMultinomialLogisticInput;
+import org.apache.spark.mllib.regression.LabeledPoint;
+import org.apache.spark.sql.DataFrame;
+import org.apache.spark.sql.SQLContext;
+
+public class JavaOneVsRestSuite implements Serializable {
+
+ private transient JavaSparkContext jsc;
+ private transient SQLContext jsql;
+ private transient DataFrame dataset;
+ private transient JavaRDD<LabeledPoint> datasetRDD;
+
+ @Before
+ public void setUp() {
+ jsc = new JavaSparkContext("local", "JavaLOneVsRestSuite");
+ jsql = new SQLContext(jsc);
+ int nPoints = 3;
+
+ /**
+ * The following weights and xMean/xVariance are computed from
iris dataset with lambda = 0.2.
+ * As a result, we are actually drawing samples from probability
distribution of built model.
+ */
+ double[] weights = {
+ -0.57997, 0.912083, -0.371077, -0.819866, 2.688191,
+ -0.16624, -0.84355, -0.048509, -0.301789, 4.170682 };
+
+ double[] xMean = {5.843, 3.057, 3.758, 1.199};
+ double[] xVariance = {0.6856, 0.1899, 3.116, 0.581};
+ List<LabeledPoint> points =
seqAsJavaList(generateMultinomialLogisticInput(
+ weights, xMean, xVariance, true, nPoints, 42));
+ datasetRDD = jsc.parallelize(points, 2);
+ dataset = jsql.createDataFrame(datasetRDD, LabeledPoint.class);
+ dataset.registerTempTable("dataset");
+ }
+
+ @After
+ public void tearDown() {
+ jsc.stop();
+ jsc = null;
+ }
+
+ @Test
+ public void oneVsRestDefaultParams() {
+ OneVsRest ova = new OneVsRest();
+ ova.setClassifier(new LogisticRegression());
+ assert(ova.getLabelCol() == "label");
+ assert(ova.getPredictionCol() == "prediction");
+ OneVsRestModel ovaModel = ova.fit(dataset);
+ ovaModel.transform(dataset).registerTempTable("prediction");
--- End diff --
Why use a temp table instead of just using the DataFrame API?
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]