itholic commented on a change in pull request #34931:
URL: https://github.com/apache/spark/pull/34931#discussion_r771137709



##########
File path: python/pyspark/pandas/frame.py
##########
@@ -8828,22 +8842,117 @@ def describe(self, percentiles: Optional[List[float]] 
= None) -> "DataFrame":
         else:
             percentiles = [0.25, 0.5, 0.75]
 
-        formatted_perc = ["{:.0%}".format(p) for p in sorted(percentiles)]
-        stats = ["count", "mean", "stddev", "min", *formatted_perc, "max"]
+        if len(exprs_numeric) == 0:
+            if len(exprs_non_numeric) == 0:
+                raise ValueError("Cannot describe a DataFrame without columns")
 
-        sdf = self._internal.spark_frame.select(*exprs).summary(*stats)
-        sdf = sdf.replace("stddev", "std", subset=["summary"])
+            # Handling non-numeric type columns
+            # We will retrive the `count`, `unique`, `top` and `freq`.
+            sdf = self._internal.spark_frame.select(*exprs_non_numeric)
 
-        internal = InternalFrame(
-            spark_frame=sdf,
-            index_spark_columns=[scol_for(sdf, "summary")],
-            column_labels=column_labels,
-            data_spark_columns=[
-                scol_for(sdf, self._internal.spark_column_name_for(label))
-                for label in column_labels
-            ],
-        )
-        return DataFrame(internal).astype("float64")
+            # Get `count` & `unique` for each columns
+            has_timestamp_type = True in is_timestamp_types
+            if not has_timestamp_type:
+                counts, uniques = map(
+                    lambda x: x[1:], sdf.summary("count", 
"count_distinct").take(2)
+                )
+            else:
+                # `summary` doesn't support for timestamp column, so we should 
manually compute it
+                # if timestamp type column exists.
+                counts = []
+                uniques = []
+                exprs = []
+                for column in exprs_non_numeric:
+                    exprs.append(F.count(column))
+                    exprs.append(F.count_distinct(column))
+
+                count_unique_values = 
list(sdf.select(*exprs).first().asDict().values())
+                for i in range(0, len(count_unique_values) - 1, 2):
+                    counts.append(str(count_unique_values[i]))
+                    uniques.append(str(count_unique_values[i + 1]))
+
+            # Get `top` & `freq` for each columns
+            tops = []
+            freqs = []
+            for column in exprs_non_numeric:
+                top, freq = (
+                    sdf.groupby(column)
+                    .count()
+                    .sort("count", ascending=False)
+                    .first()
+                    .asDict()
+                    .values()
+                )
+                tops.append(str(top))
+                freqs.append(str(freq))
+
+            stats = [counts, uniques, tops, freqs]
+            stats_names = ["count", "unique", "top", "freq"]
+
+            # Get `first` & `last` for each columns if timestamp type column 
exists.
+            if has_timestamp_type:
+                exprs = []
+                for is_timestamp_type, column, column_name in zip(
+                    is_timestamp_types, exprs_non_numeric, column_names
+                ):
+                    if is_timestamp_type:
+                        # `first` & `last` are min & max respectively for 
timestamp type.
+                        exprs.append(F.min(column))
+                        exprs.append(F.max(column))
+                    else:
+                        # `first` & `last` are always NaN for string type 
columns.
+                        exprs.append(F.lit(np.NaN).alias(column_name + 
"_first"))
+                        exprs.append(F.lit(np.NaN).alias(column_name + 
"_last"))
+
+                firsts = []
+                lasts = []
+                first_last_values = 
list(sdf.select(*exprs).first().asDict().values())

Review comment:
       Thanks! I'll address it
   
   I believe `sdf` cannot be empty since it raises `ValueError("Cannot describe 
a DataFrame without columns")` before this place, when the `exprs_non_numeric` 
is empty (`sdf` is created by selecting `exprs_non_numeric`)
   
   ```python
           if len(exprs_numeric) == 0:
               if len(exprs_non_numeric) == 0:
                   raise ValueError("Cannot describe a DataFrame without 
columns")
   ```




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to