itholic commented on code in PR #39212:
URL: https://github.com/apache/spark/pull/39212#discussion_r1057096989
##########
python/pyspark/sql/connect/client.py:
##########
@@ -36,6 +41,49 @@
)
+def _configure_logging() -> logging.Logger:
+ """Configure logging for the Spark Connect clients."""
+ logger = logging.getLogger("pyspark.sql.connect.client")
+ handler = logging.StreamHandler()
+ handler.setFormatter(
+ logging.Formatter(fmt="%(asctime)s %(process)d %(levelname)s
%(funcName)s %(message)s")
+ )
+ logger.addHandler(handler)
+
+ # Check the environment variables for log levels:
+ level = os.getenv("SPARK_CONNECT_LOG_LEVEL", "none").lower()
+ if level == "info":
+ logger.setLevel(logging.INFO)
+ elif level == "warn":
+ logger.setLevel(logging.WARNING)
+ elif level == "error":
+ logger.setLevel(logging.ERROR)
+ elif level == "debug":
+ logger.setLevel(logging.DEBUG)
+ else:
+ logger.disabled = True
+ return logger
+
+
+# Instantiate the logger based on the environment configuration.
+_logger = _configure_logging()
+
+
+class SparkConnectClientException(Exception):
+ def __init__(self, message: str) -> None:
+ super(SparkConnectClientException, self).__init__(message)
+
+
+class SparkConnectAnalysisException(SparkConnectClientException):
+ def __init__(self, reason: str, message: str, plan: str) -> None:
+ self._reason = reason
+ self._message = message
+ self._plan = plan
+
+ def __str__(self) -> str:
+ return f"{self._message}\nPlan: {self._plan}"
Review Comment:
FYI: just created ticket for migrating Spark Connect errors into error
classes in the future: https://issues.apache.org/jira/browse/SPARK-41712
##########
python/pyspark/sql/connect/client.py:
##########
@@ -36,6 +41,49 @@
)
+def _configure_logging() -> logging.Logger:
+ """Configure logging for the Spark Connect clients."""
+ logger = logging.getLogger("pyspark.sql.connect.client")
+ handler = logging.StreamHandler()
+ handler.setFormatter(
+ logging.Formatter(fmt="%(asctime)s %(process)d %(levelname)s
%(funcName)s %(message)s")
+ )
+ logger.addHandler(handler)
+
+ # Check the environment variables for log levels:
+ level = os.getenv("SPARK_CONNECT_LOG_LEVEL", "none").lower()
+ if level == "info":
+ logger.setLevel(logging.INFO)
+ elif level == "warn":
+ logger.setLevel(logging.WARNING)
+ elif level == "error":
+ logger.setLevel(logging.ERROR)
+ elif level == "debug":
+ logger.setLevel(logging.DEBUG)
+ else:
+ logger.disabled = True
+ return logger
+
+
+# Instantiate the logger based on the environment configuration.
+_logger = _configure_logging()
+
+
+class SparkConnectClientException(Exception):
+ def __init__(self, message: str) -> None:
+ super(SparkConnectClientException, self).__init__(message)
+
+
+class SparkConnectAnalysisException(SparkConnectClientException):
+ def __init__(self, reason: str, message: str, plan: str) -> None:
+ self._reason = reason
+ self._message = message
+ self._plan = plan
+
+ def __str__(self) -> str:
+ return f"{self._message}\nPlan: {self._plan}"
Review Comment:
FYI: just created ticket for migrating Spark Connect errors into error
classes in the future: SPARK-41712
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]