sahnib commented on code in PR #45376:
URL: https://github.com/apache/spark/pull/45376#discussion_r1591313779
##########
sql/core/src/main/scala/org/apache/spark/sql/KeyValueGroupedDataset.scala:
##########
@@ -739,35 +812,145 @@ class KeyValueGroupedDataset[K, V] private[sql](
)
}
+ /**
+ * (Scala-specific)
+ * Invokes methods defined in the stateful processor used in arbitrary state
API v2.
+ * Functions as the function above, but with additional eventTimeColumnName
for output.
+ *
+ * @tparam U The type of the output objects. Must be encodable to Spark SQL
types.
+ * @tparam S The type of initial state objects. Must be encodable to Spark
SQL types.
+ *
+ * Downstream operators would use specified eventTimeColumnName to calculate
watermark.
+ * Note that TimeMode is set to EventTime to ensure correct flow of
watermark.
+ *
+ * @param statefulProcessor Instance of statefulProcessor whose functions
will
+ * be invoked by the operator.
+ * @param eventTimeColumnName eventTime column in the output dataset. Any
operations after
+ * transformWithState will use the new
eventTimeColumn. The user
+ * needs to ensure that the eventTime for emitted
output adheres to
+ * the watermark boundary, otherwise streaming
query will fail.
+ * @param outputMode The output mode of the stateful processor.
+ * @param initialState User provided initial state that will be used
to initiate state for
+ * the query in the first batch.
+ *
+ * See [[Encoder]] for more details on what types are encodable to Spark SQL.
+ */
+ private[sql] def transformWithState[U: Encoder, S: Encoder](
+ statefulProcessor: StatefulProcessorWithInitialState[K, V, U, S],
+ eventTimeColumnName: String,
+ outputMode: OutputMode,
+ initialState: KeyValueGroupedDataset[K, S]): Dataset[U] = {
+ val transformWithState = TransformWithState[K, V, U, S](
+ groupingAttributes,
+ dataAttributes,
+ statefulProcessor,
+ TimeMode.EventTime(),
+ outputMode,
+ child = logicalPlan,
+ initialState.groupingAttributes,
+ initialState.dataAttributes,
+ initialState.queryExecution.analyzed
+ )
+
+ updateEventTimeColumnAfterTransformWithState(transformWithState,
eventTimeColumnName)
+ }
+
/**
* (Java-specific)
* Invokes methods defined in the stateful processor used in arbitrary state
API v2.
- * Functions as the function above, but with additional initial state.
+ * Functions as the function above, but with additional initialStateEncoder
for state encoding.
+ *
+ * @tparam U The type of the output objects. Must be encodable to Spark SQL
types.
+ * @tparam S The type of initial state objects. Must be encodable to Spark
SQL types.
+ * @param statefulProcessor Instance of statefulProcessor whose functions
will
+ * be invoked by the operator.
+ * @param timeMode The time mode semantics of the stateful
processor for
+ * timers and TTL.
+ * @param outputMode The output mode of the stateful processor.
+ * @param initialState User provided initial state that will be used
to initiate state for
+ * the query in the first batch.
+ * @param outputEncoder Encoder for the output type.
+ * @param initialStateEncoder Encoder for the initial state type.
+ *
+ * See [[Encoder]] for more details on what types are encodable to Spark SQL.
+ */
+ private[sql] def transformWithState[U: Encoder, S: Encoder](
+ statefulProcessor: StatefulProcessorWithInitialState[K, V, U, S],
+ timeMode: TimeMode,
+ outputMode: OutputMode,
+ initialState: KeyValueGroupedDataset[K, S],
+ outputEncoder: Encoder[U],
+ initialStateEncoder: Encoder[S]): Dataset[U] = {
+ transformWithState(statefulProcessor, timeMode,
+ outputMode, initialState)(outputEncoder, initialStateEncoder)
+ }
+
+ /**
+ * (Java-specific)
+ * Invokes methods defined in the stateful processor used in arbitrary state
API v2.
+ * Functions as the function above, but with additional eventTimeColumnName
for output.
+ *
+ * Downstream operators would use specified eventTimeColumnName to calculate
watermark.
+ * Note that TimeMode is set to EventTime to ensure correct flow of
watermark.
*
* @tparam U The type of the output objects. Must be encodable to Spark SQL
types.
* @tparam S The type of initial state objects. Must be encodable to Spark
SQL types.
* @param statefulProcessor Instance of statefulProcessor whose functions
will
* be invoked by the operator.
- * @param timeMode The time mode semantics of the stateful
processor for timers and TTL.
* @param outputMode The output mode of the stateful processor.
* @param initialState User provided initial state that will be used to
initiate state for
* the query in the first batch.
+ * @param eventTimeColumnName event column in the output dataset. Any
operations after
+ * transformWithState will use the new
eventTimeColumn. The user
+ * needs to ensure that the eventTime for emitted
output adheres to
+ * the watermark boundary, otherwise streaming
query will fail.
* @param outputEncoder Encoder for the output type.
* @param initialStateEncoder Encoder for the initial state type.
*
* See [[Encoder]] for more details on what types are encodable to Spark SQL.
*/
private[sql] def transformWithState[U: Encoder, S: Encoder](
statefulProcessor: StatefulProcessorWithInitialState[K, V, U, S],
- timeMode: TimeMode,
outputMode: OutputMode,
initialState: KeyValueGroupedDataset[K, S],
+ eventTimeColumnName: String,
outputEncoder: Encoder[U],
initialStateEncoder: Encoder[S]): Dataset[U] = {
- transformWithState(statefulProcessor, timeMode,
+ transformWithState(statefulProcessor, eventTimeColumnName,
outputMode, initialState)(outputEncoder, initialStateEncoder)
}
+ /**
+ * Creates a new dataset with updated eventTimeColumn after the
transformWithState
+ * logical node.
+ */
+ private def updateEventTimeColumnAfterTransformWithState[U: Encoder](
+ transformWithState: LogicalPlan,
+ eventTimeColumnName: String): Dataset[U] = {
+ val existingWatermarkDelay = logicalPlan.collect {
Review Comment:
Hmm, good point. I added a Analyzer rule
`ResolveUpdateEventTimeWatermarkColumn` to extract watermark delay at the end
of resolution.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]