chaoqin-li1123 commented on code in PR #46139:
URL: https://github.com/apache/spark/pull/46139#discussion_r1607401423


##########
python/docs/source/user_guide/sql/python_data_source.rst:
##########
@@ -84,9 +109,157 @@ Define the reader logic to generate synthetic data. Use 
the `faker` library to p
                     row.append(value)
                 yield tuple(row)
 
+Implementing Streaming Reader and Writer for Python Data Source
+---------------------------------------------------------------
+**Implement the Stream Reader**
+
+This is a dummy streaming data reader that generate 2 rows in every 
microbatch. The streamReader instance has a integer offset that increase by 2 
in every microbatch.
+
+.. code-block:: python
+
+    class RangePartition(InputPartition):
+        def __init__(self, start, end):
+            self.start = start
+            self.end = end
+
+    class FakeStreamReader(DataSourceStreamReader):
+        def __init__(self, schema, options):
+            self.current = 0
+
+        def initialOffset(self) -> dict:
+            """
+            Return the initial start offset of the reader.
+            """
+            return {"offset": 0}
+
+        def latestOffset(self) -> dict:
+            """
+            Return the current latest offset that the next microbatch will 
read to.
+            """
+            self.current += 2
+            return {"offset": self.current}
+
+        def partitions(self, start: dict, end: dict):
+            """
+            Plans the partitioning of the current microbatch defined by start 
and end offset,
+            it needs to return a sequence of :class:`InputPartition` object.
+            """
+            return [RangePartition(start["offset"], end["offset"])]
+
+        def commit(self, end: dict):
+            """
+            This is invoked when the query has finished processing data before 
end offset, this can be used to clean up resource.
+            """
+            pass
+
+        def read(self, partition) -> Iterator[Tuple]:
+            """
+            Takes a partition as an input and read an iterator of tuples from 
the data source.
+            """
+            start, end = partition.start, partition.end
+            for i in range(start, end):
+                yield (i, str(i))
+
+**Implement the Simple Stream Reader**
+
+If the data source has low throughput and doesn't require partitioning, you 
can implement SimpleDataSourceStreamReader instead of DataSourceStreamReader.
+
+One of simpleStreamReader() and streamReader() must be implemented for 
readable streaming data source. And simpleStreamReader() will only be invoked 
when streamReader() is not implemented.
+
+This is the same dummy streaming reader that generate 2 rows every batch 
implemented with SimpleDataSourceStreamReader interface.
+
+.. code-block:: python
+
+    class SimpleStreamReader(SimpleDataSourceStreamReader):
+        def initialOffset(self):
+            """
+            Return the initial start offset of the reader.
+            """
+            return {"offset": 0}
+
+        def read(self, start: dict) -> (Iterator[Tuple], dict):
+            """
+            Takes start offset as an input, return an iterator of tuples and 
the start offset of next read.
+            """
+            start_idx = start["offset"]
+            it = iter([(i,) for i in range(start_idx, start_idx + 2)])
+            return (it, {"offset": start_idx + 2})
+
+        def readBetweenOffsets(self, start: dict, end: dict) -> 
Iterator[Tuple]:

Review Comment:
   This is required because we need to repeat the read in a range after query 
restart.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to