MaxGekk commented on code in PR #48004:
URL: https://github.com/apache/spark/pull/48004#discussion_r1754532183


##########
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/randomExpressions.scala:
##########
@@ -181,3 +189,215 @@ case class Randn(child: Expression, hideSeed: Boolean = 
false) extends RDG {
 object Randn {
   def apply(seed: Long): Randn = Randn(Literal(seed, LongType))
 }
+
+@ExpressionDescription(
+  usage = """
+    _FUNC_(min, max[, seed]) - Returns a random value with independent and 
identically
+      distributed (i.i.d.) values with the specified range of numbers. The 
random seed is optional.
+      The provided numbers specifying the minimum and maximum values of the 
range must be constant.
+      If both of these numbers are integers, then the result will also be an 
integer. Otherwise if
+      one or both of these are floating-point numbers, then the result will 
also be a floating-point
+      number.
+  """,
+  examples = """
+    Examples:
+      > SELECT _FUNC_(10, 20) > 0;
+      true
+  """,
+  since = "4.0.0",
+  group = "math_funcs")
+case class Uniform(min: Expression, max: Expression, seed: Expression)
+  extends RuntimeReplaceable with TernaryLike[Expression] with 
ExpressionWithRandomSeed {
+  def this(min: Expression, max: Expression) =
+    this(min, max, Literal(Uniform.random.nextLong(), LongType))
+
+  final override lazy val deterministic: Boolean = false
+  override val nodePatterns: Seq[TreePattern] =
+    Seq(RUNTIME_REPLACEABLE, EXPRESSION_WITH_RANDOM_SEED)
+
+  override val dataType: DataType = {
+    val first = min.dataType
+    val second = max.dataType
+    (min.dataType, max.dataType) match {
+      case _ if !valid(min) || !valid(max) => NullType
+      case (_, LongType) | (LongType, _) if Seq(first, second).forall(integer) 
=> LongType
+      case (_, IntegerType) | (IntegerType, _) if Seq(first, 
second).forall(integer) => IntegerType
+      case (_, ShortType) | (ShortType, _) if Seq(first, 
second).forall(integer) => ShortType
+      case (_, DoubleType) | (DoubleType, _) => DoubleType
+      case (_, FloatType) | (FloatType, _) => FloatType
+      case _ => NullType
+    }
+  }
+
+  private def valid(e: Expression): Boolean = e.dataType match {
+    case _ if !e.foldable => false
+    case _: ShortType | _: IntegerType | _: LongType | _: FloatType | _: 
DoubleType => true
+    case _ => false
+  }
+
+  private def integer(t: DataType): Boolean = t match {
+    case _: ShortType | _: IntegerType | _: LongType => true

Review Comment:
   You could check either it is `IntegralType` or not if you would support 
`ByteType`.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to