wbo4958 opened a new pull request, #48791:
URL: https://github.com/apache/spark/pull/48791
### What changes were proposed in this pull request?
This PR supports running spark.ml on connect
### Why are the changes needed?
It's a new feature that makes spark.ml run on connect environment.
### Does this PR introduce _any_ user-facing change?
Yes, new feature.
### How was this patch tested?
The below manual test can work without any exception.
``` python
(pyspark) user@bobby:~ $ pyspark --remote sc://localhost
Python 3.11.10 (main, Oct 3 2024, 07:29:13) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 4.0.0.dev0
/_/
Using Python version 3.11.10 (main, Oct 3 2024 07:29:13)
Client connected to the Spark Connect server at localhost
SparkSession available as 'spark'.
>>> from pyspark.ml.classification import (LogisticRegression,
... LogisticRegressionModel)
>>> from pyspark.ml.linalg import Vectors
>>>
>>> df = spark.createDataFrame([
... (Vectors.dense([1.0, 2.0]), 1),
... (Vectors.dense([2.0, -1.0]), 1),
... (Vectors.dense([-3.0, -2.0]), 0),
... (Vectors.dense([-1.0, -2.0]), 0),
... ], schema=['features', 'label'])
>>> lr = LogisticRegression()
>>> lr.setMaxIter(30)
LogisticRegression_a842693fc5e7
>>> model: LogisticRegressionModel = lr.fit(df)
>>> model.predictRaw(Vectors.dense([1.0, 2.0]))
DenseVector([-21.1048, 21.1048])
>>> assert model.getMaxIter() == 30
>>> model.summary.roc.show()
+---+---+
|FPR|TPR|
+---+---+
|0.0|0.0|
|0.0|0.5|
|0.0|1.0|
|0.5|1.0|
|1.0|1.0|
|1.0|1.0|
+---+---+
>>> model.summary.weightedRecall
1.0
>>> model.summary.recallByLabel
[1.0, 1.0]
>>> model.coefficients
DenseVector([10.3964, 4.513])
>>> model.intercept
1.6823489096339976
>>> model.transform(df).show()
+-----------+-----+--------------------+--------------------+----------+
| features|label| rawPrediction| probability|prediction|
+-----------+-----+--------------------+--------------------+----------+
| [1.0,2.0]| 1|[-21.104818251026...|[6.82800596288997...| 1.0|
| [2.0,-1.0]| 1|[-17.962094978515...|[1.58183529116629...| 1.0|
|[-3.0,-2.0]| 0|[38.5329050234205...| [1.0,0.0]| 0.0|
|[-1.0,-2.0]| 0|[17.7401204317582...|[0.99999998025016...| 0.0|
+-----------+-----+--------------------+--------------------+----------+
>>> model.write().overwrite().save("/tmp/connect-ml-demo")
>>> loaded_model = LogisticRegressionModel.load("/tmp/connect-ml-demo")
>>> assert loaded_model.getMaxIter() == 30
>>> loaded_model.transform(df).show()
+-----------+-----+--------------------+--------------------+----------+
| features|label| rawPrediction| probability|prediction|
+-----------+-----+--------------------+--------------------+----------+
| [1.0,2.0]| 1|[-21.104818251026...|[6.82800596288997...| 1.0|
| [2.0,-1.0]| 1|[-17.962094978515...|[1.58183529116629...| 1.0|
|[-3.0,-2.0]| 0|[38.5329050234205...| [1.0,0.0]| 0.0|
|[-1.0,-2.0]| 0|[17.7401204317582...|[0.99999998025016...| 0.0|
+-----------+-----+--------------------+--------------------+----------+
```
### Was this patch authored or co-authored using generative AI tooling?
No
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]