beliefer commented on code in PR #49452:
URL: https://github.com/apache/spark/pull/49452#discussion_r1912016999
##########
connector/docker-integration-tests/src/test/scala/org/apache/spark/sql/jdbc/v2/V2JDBCTest.scala:
##########
@@ -986,4 +986,18 @@ private[v2] trait V2JDBCTest extends SharedSparkSession
with DockerIntegrationFu
test("scan with filter push-down with date time functions") {
testDatetime(s"$catalogAndNamespace.${caseConvert("datetime")}")
}
+
+ test("SPARK-50792 Format binary data as a binary literal in JDBC.") {
+ withTable(s"$catalogName.test_binary_literal") {
+ // Create a table with binary column
+ val binary = "X'123456'"
+ val tableName = "test_binary_literal"
+
+ sql(s"CREATE TABLE $catalogName.$tableName (binary_col BINARY)")
+ sql(s"INSERT INTO $catalogName.$tableName VALUES ($binary)")
+
+ val select = s"SELECT * FROM $catalogName.$tableName WHERE binary_col =
$binary"
+ assert(spark.sql(select).collect().length === 1, s"Binary literal test
failed: $select")
+ }
+ }
Review Comment:
Yes. If we update the basic class `JdbcDialect`, we should test all the
built-in integration tests.
`tablePreparation` used to customize the DDL, I'm afraid we can use Spark
SQL can covers all the built-in integration tests. But you could do your best
effort, let's see the result and make the decision.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]