HeartSaVioR commented on code in PR #40561: URL: https://github.com/apache/spark/pull/40561#discussion_r2096754587
########## sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/statefulOperators.scala: ########## @@ -980,3 +1023,67 @@ object StreamingDeduplicateExec { private val EMPTY_ROW = UnsafeProjection.create(Array[DataType](NullType)).apply(InternalRow.apply(null)) } + +case class StreamingDeduplicateWithinWatermarkExec( + keyExpressions: Seq[Attribute], + child: SparkPlan, + stateInfo: Option[StatefulOperatorStateInfo] = None, + eventTimeWatermarkForLateEvents: Option[Long] = None, + eventTimeWatermarkForEviction: Option[Long] = None) + extends BaseStreamingDeduplicateExec { + + protected val schemaForValueRow: StructType = StructType( + Array(StructField("expiresAtMicros", LongType, nullable = false))) + + protected val extraOptionOnStateStore: Map[String, String] = Map.empty + + private val eventTimeCol: Attribute = WatermarkSupport.findEventTimeColumn(child.output, + allowMultipleEventTimeColumns = false).get + private val delayThresholdMs = eventTimeCol.metadata.getLong(EventTimeWatermark.delayKey) + private val eventTimeColOrdinal: Int = child.output.indexOf(eventTimeCol) + + protected def initializeReusedDupInfoRow(): Option[UnsafeRow] = { + val timeoutToUnsafeRow = UnsafeProjection.create(schemaForValueRow) + val timeoutRow = timeoutToUnsafeRow(new SpecificInternalRow(schemaForValueRow)) + Some(timeoutRow) + } + + protected def putDupInfoIntoState( + store: StateStore, + data: UnsafeRow, + key: UnsafeRow, + reusedDupInfoRow: Option[UnsafeRow]): Unit = { + assert(reusedDupInfoRow.isDefined, "This should have reused row.") + val timeoutRow = reusedDupInfoRow.get + + // We expect data type of event time column to be TimestampType or TimestampNTZType which both + // are internally represented as Long. + val timestamp = data.getLong(eventTimeColOrdinal) + // The unit of timestamp in Spark is microseconds, convert the delay threshold to micros. + val expiresAt = timestamp + DateTimeUtils.millisToMicros(delayThresholdMs) Review Comment: I just quoted from the method doc of dropDuplicatesWithinWatermark: > For a streaming [[Dataset]], this will keep all data across triggers as intermediate state to drop duplicated rows. The state will be kept to guarantee the semantic, "Events are deduplicated as long as the time distance of earliest and latest events are smaller than the delay threshold of watermark." Users are encouraged to set the delay threshold of watermark longer than max timestamp differences among duplicated events. See here: > "Events are deduplicated as long as the time distance of earliest and latest events are smaller than the delay threshold of watermark." -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org