Github user freeman-lab commented on a diff in the pull request:
https://github.com/apache/spark/pull/5267#discussion_r32355863
--- Diff:
mllib/src/main/scala/org/apache/spark/mllib/clustering/HierarchicalClustering.scala
---
@@ -0,0 +1,631 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.mllib.clustering
+
+import breeze.linalg.{DenseVector => BDV, SparseVector => BSV, Vector =>
BV, norm => breezeNorm}
+import org.apache.spark.mllib.linalg.{Vector, Vectors}
+import org.apache.spark.rdd.RDD
+import org.apache.spark.util.random.XORShiftRandom
+import org.apache.spark.{Logging, SparkException}
+
+import scala.collection.{Map, mutable}
+
+
+object HierarchicalClustering extends Logging {
+
+ private[clustering] val ROOT_INDEX_KEY: Long = 1
+
+ /**
+ * Finds the closes cluster's center
+ *
+ * @param metric a distance metric
+ * @param centers centers of the clusters
+ * @param point a target point
+ * @return an index of the array of clusters
+ */
+ private[mllib]
+ def findClosestCenter(metric: Function2[BV[Double], BV[Double], Double])
+ (centers: Seq[BV[Double]])(point: BV[Double]): Int = {
+ val (closestCenter, closestIndex) =
+ centers.zipWithIndex.map { case (center, idx) => (metric(center,
point), idx)}.minBy(_._1)
+ closestIndex
+ }
+}
+
+/**
+ * This is a divisive hierarchical clustering algorithm based on bi-sect
k-means algorithm.
+ *
+ * The main idea of this algorithm is based on "A comparison of document
clustering techniques",
+ * M. Steinbach, G. Karypis and V. Kumar. Workshop on Text Mining, KDD,
2000.
+ * http://cs.fit.edu/~pkc/classes/ml-internet/papers/steinbach00tr.pdf
+ *
+ * @param numClusters tne number of clusters you want
+ * @param clusterMap the pairs of cluster and its index as Map
+ * @param maxIterations the number of maximal iterations
+ * @param maxRetries the number of maximum retries
+ * @param seed a random seed
+ */
+class HierarchicalClustering private (
+ private var numClusters: Int,
+ private var clusterMap: Map[Long, ClusterTree],
+ private var maxIterations: Int,
+ private var maxRetries: Int,
+ private var seed: Long) extends Logging {
+
+ /**
+ * Constructs with the default configuration
+ */
+ def this() = this(20, mutable.ListMap.empty[Long, ClusterTree], 20, 10,
1)
+
+ /**
+ * Sets the number of clusters you want
+ */
+ def setNumClusters(numClusters: Int): this.type = {
+ this.numClusters = numClusters
+ this
+ }
+
+ def getNumClusters: Int = this.numClusters
+
+ /**
+ * Sets the number of maximal iterations in each clustering step
+ */
+ def setMaxIterations(maxIterations: Int): this.type = {
+ this.maxIterations = maxIterations
+ this
+ }
+
+ def getMaxIterations: Int = this.maxIterations
+
+ /**
+ * Sets the number of maximum retries of each clustering step
+ */
+ def setMaxRetries(maxRetries: Int): this.type = {
+ this.maxRetries = maxRetries
+ this
+ }
+
+ def getMaxRetries: Int = this.maxRetries
+
+ /**
+ * Sets the random seed
+ */
+ def setSeed(seed: Long): this.type = {
+ this.seed = seed
+ this
+ }
+
+ def getSeed: Long = this.seed
+
+ /**
+ * Runs the hierarchical clustering algorithm
+ * @param input RDD of vectors
+ * @return model for the hierarchical clustering
+ */
+ def run(input: RDD[Vector]): HierarchicalClusteringModel = {
+ val sc = input.sparkContext
+ log.info(s"${sc.appName} starts a hierarchical clustering algorithm")
+
+ var data = initData(input).cache()
+ val startTime = System.currentTimeMillis()
+
+ // `clusters` is described as binary tree structure
+ // `clusters(1)` means the root of a binary tree
+ var clusters = summarizeAsClusters(data)
+ var leafClusters = clusters
+ var step = 1
+ var numDividedClusters = 0
+ var noMoreDividable = false
+ var rddArray = Array.empty[RDD[(Long, BV[Double])]]
+ // the number of maximum nodes of a binary tree by given parameter
+ val multiplier = math.ceil(math.log10(this.numClusters) /
math.log10(2.0)) + 1
+ val maxAllNodesInTree = math.pow(2, multiplier).toInt
+
+ while (clusters.size < maxAllNodesInTree && noMoreDividable == false) {
+ log.info(s"${sc.appName} starts step ${step}")
+
+ // enough to be clustered if the number of divided clusters is equal
to 0
+ val divided = getDividedClusters(data, leafClusters)
+ if (divided.size == 0) {
+ noMoreDividable = true
+ }
+ else {
+ // update each index
+ val newData = updateClusterIndex(data, divided).cache()
+ rddArray = rddArray ++ Array(data)
+ data = newData
+
+ // keep recent 2 cached RDDs in order to run more quickly
+ if (rddArray.size > 1) {
+ val head = rddArray.head
+ head.unpersist()
+ rddArray = rddArray.filterNot(_.hashCode() == head.hashCode())
+ }
+
+ // merge the divided clusters with the map as the cluster tree
+ clusters = clusters ++ divided
+ numDividedClusters = data.map(_._1).distinct().count().toInt
+ leafClusters = divided
+ step += 1
+
+ log.info(s"${sc.appName} adding ${divided.size} new clusters at
step:${step}")
+ }
+ }
+ // unpersist kept RDDs
+ rddArray.foreach(_.unpersist())
+
+ // build a cluster tree by Map class which is expressed
+ log.info(s"Building the cluster tree is started in ${sc.appName}")
+ val root = buildTree(clusters, HierarchicalClustering.ROOT_INDEX_KEY,
this.numClusters)
+ if (root == None) {
+ new SparkException("Failed to build a cluster tree from a Map type
of clusters")
+ }
+
+ // set the elapsed time for training
+ val finishTime = (System.currentTimeMillis() - startTime) / 1000.0
+ log.info(s"Elapsed Time for Hierarchical Clustering Training:
${finishTime} [sec]")
+
+ // make a hierarchical clustering model
+ val model = new HierarchicalClusteringModel(root.get)
+ val leavesNodes = model.getClusters
+ if (leavesNodes.size < this.numClusters) {
+ log.warn(s"# clusters is less than you have expected:
${leavesNodes.size} / ${numClusters}. ")
+ }
+ model
+ }
+
+ /**
+ * Assigns the initial cluster index id to all data
+ */
+ private[clustering]
+ def initData(data: RDD[Vector]): RDD[(Long, BV[Double])] = {
+ data.map { v: Vector => (HierarchicalClustering.ROOT_INDEX_KEY,
v.toBreeze)}.cache
+ }
+
+ /**
+ * Summarizes data by each cluster as ClusterTree classes
+ */
+ private[clustering]
+ def summarizeAsClusters(data: RDD[(Long, BV[Double])]): Map[Long,
ClusterTree] = {
+ // summarize input data
+ val stats = summarize(data)
+
+ // convert statistics to ClusterTree class
+ stats.map { case (i, (sum, n, sumOfSquares)) =>
+ val center = Vectors.fromBreeze(sum :/ n)
+ val variances = n match {
+ case n if n > 1 => Vectors.fromBreeze(sumOfSquares.:*(n) - (sum :*
sum) :/ (n * (n - 1.0)))
+ case _ => Vectors.zeros(sum.size)
+ }
+ (i, new ClusterTree(center, n.toLong, variances))
+ }.toMap
+ }
+
+ /**
+ * Summarizes data by each cluster as Map
+ */
+ private[clustering]
+ def summarize(data: RDD[(Long, BV[Double])]): Map[Long, (BV[Double],
Double, BV[Double])] = {
+ data.mapPartitions { iter =>
+ // calculate the accumulation of the all point in a partition and
count the rows
+ val map = mutable.Map.empty[Long, (BV[Double], Double, BV[Double])]
+ iter.foreach { case (idx: Long, point: BV[Double]) =>
+ // get a map value or else get a sparse vector
+ val (sumBV, n, sumOfSquares) = map.get(idx)
+ .getOrElse(BSV.zeros[Double](point.size), 0.0,
BSV.zeros[Double](point.size))
+ map(idx) = (sumBV + point, n + 1.0, sumOfSquares + (point :*
point))
+ }
+ map.toIterator
+ }.reduceByKey { case ((sum1, n1, sumOfSquares1), (sum2, n2,
sumOfSquares2)) =>
+ // sum the accumulation and the count in the all partition
+ (sum1 + sum2, n1 + n2, sumOfSquares1 + sumOfSquares2)
+ }.collect().toMap
+ }
+
+ /**
+ * Gets the new divided centers
+ */
+ private[clustering]
+ def getDividedClusters(data: RDD[(Long, BV[Double])],
+ dividedClusters: Map[Long, ClusterTree]): Map[Long, ClusterTree] = {
+ val sc = data.sparkContext
+ val appName = sc.appName
+
+ // get keys of dividable clusters
+ val dividableKeys = dividedClusters.filter { case (idx, cluster) =>
+ cluster.variances.toArray.sum > 0.0 && cluster.records >= 2
+ }.keySet
+ if (dividableKeys.size == 0) {
+ log.info(s"There is no dividable clusters in ${appName}.")
+ return Map.empty[Long, ClusterTree]
+ }
+
+ // divide input data
+ var dividableData = data.filter { case (idx, point) =>
dividableKeys.contains(idx)}
+ var dividableClusters = dividedClusters.filter { case (k, v) =>
dividableKeys.contains(k)}
+ val idealIndexes = dividableKeys.flatMap(idx => Array(2 * idx, 2 * idx
+ 1).toIterator)
+ var stats = divide(data, dividableClusters)
+
+ // if there is clusters which is failed to be divided,
+ // retry to divide only failed clusters again and again
+ var tryTimes = 1
+ while (stats.size < dividableKeys.size * 2 && tryTimes <=
this.maxRetries) {
+ // get the indexes of clusters which is failed to be divided
+ val failedIndexes =
idealIndexes.filterNot(stats.keySet.contains).map(idx => (idx / 2).toLong)
+ val failedCenters = dividedClusters.filter { case (idx, clstr) =>
failedIndexes.contains(idx)}
+ log.info(s"# failed clusters is ${failedCenters.size} of
${dividableKeys.size}" +
+ s"at ${tryTimes} times in ${appName}")
+
+ // divide the failed clusters again
+ val bcFailedIndexes = sc.broadcast(failedIndexes)
+ dividableData = data.filter { case (idx, point) =>
bcFailedIndexes.value.contains(idx)}
+ val missingStats = divide(dividableData, failedCenters)
+ stats = stats ++ missingStats
+ tryTimes += 1
+ }
+
+ // make children clusters
+ stats.filter { case (i, (sum, n, sumOfSquares)) => n > 0}
+ .map { case (i, (sum, n, sumOfSquares)) =>
+ val center = Vectors.fromBreeze(sum :/ n)
+ val variances = n match {
+ case 1 => Vectors.sparse(sum.size, Array(), Array())
+ case _ => Vectors.fromBreeze(sumOfSquares.:*(n) - (sum :* sum) :/
(n * (n - 1.0)))
+ }
+ val child = new ClusterTree(center, n.toLong, variances)
+ (i, child)
+ }.toMap
+ }
+
+ /**
+ * Divides the input data
+ *
+ * @param data the pairs of cluster index and point which you want to
divide
+ * @param clusters the clusters you want to divide AS a Map class
+ * @return divided clusters as Map
+ */
+ private[clustering]
+ def divide(data: RDD[(Long, BV[Double])],
+ clusters: Map[Long, ClusterTree]): Map[Long, (BV[Double], Double,
BV[Double])] = {
+
+ val sc = data.sparkContext
+ val centers = clusters.map { case (idx, cluster) => (idx,
cluster.center.toBreeze)}
+ var newCenters = initChildrenCenter(centers)
+ if (newCenters.size == 0) {
+ return Map.empty[Long, (BV[Double], Double, BV[Double])]
+ }
+ var bcNewCenters = sc.broadcast(newCenters)
+
+ // TODO Supports distance metrics other Euclidean distance metric
+ val metric = (bv1: BV[Double], bv2: BV[Double]) => breezeNorm(bv1 -
bv2, 2.0)
+ val bcMetric = sc.broadcast(metric)
+
+ val vectorSize = newCenters(newCenters.keySet.min).size
+ var stats = newCenters.keys.map { idx =>
+ (idx, (BSV.zeros[Double](vectorSize).toVector, 0.0,
BSV.zeros[Double](vectorSize).toVector))
+ }.toMap
+
+ var subIter = 0
+ var diffVariances = Double.MaxValue
+ var oldVariances = Double.MaxValue
+ var variances = Double.MaxValue
+ while (subIter < this.maxIterations && diffVariances > 10E-4) {
+ // calculate summary of each cluster
+ val eachStats = data.mapPartitions { iter =>
+ val map = mutable.Map.empty[Long, (BV[Double], Double, BV[Double])]
+ iter.foreach { case (idx, point) =>
+ // calculate next index number
+ val childrenCenters = Array(2 * idx, 2 * idx + 1)
+
.filter(bcNewCenters.value.keySet.contains(_)).map(bcNewCenters.value(_)).toArray
+ if (childrenCenters.size >= 1) {
+ val closestIndex =
+
HierarchicalClustering.findClosestCenter(bcMetric.value)(childrenCenters)(point)
+ val nextIndex = 2 * idx + closestIndex
+
+ // get a map value or else get a sparse vector
+ val (sumBV, n, sumOfSquares) = map.get(nextIndex)
+ .getOrElse(BSV.zeros[Double](point.size), 0.0,
BSV.zeros[Double](point.size))
+ map(nextIndex) = (sumBV + point, n + 1.0, sumOfSquares +
(point :* point))
+ }
+ }
+ map.toIterator
+ }.reduceByKey { case ((sv1, n1, sumOfSquares1), (sv2, n2,
sumOfSquares2)) =>
+ // sum the accumulation and the count in the all partition
+ (sv1 + sv2, n1 + n2, sumOfSquares1 + sumOfSquares2)
+ }.collect().toMap
+
+ // calculate the center of each cluster
+ newCenters = eachStats.map { case (idx, (sum, n, sumOfSquares)) =>
(idx, sum :/ n)}
+ bcNewCenters = sc.broadcast(newCenters)
+
+ // update summary of each cluster
+ stats = eachStats.toMap
+
+ variances = stats.map { case (idx, (sum, n, sumOfSquares)) =>
+ math.pow(sumOfSquares.toArray.sum, 1.0 / sumOfSquares.size)
+ }.sum
+ diffVariances = math.abs(oldVariances - variances) / oldVariances
+ oldVariances = variances
+ subIter += 1
+ }
+ stats
+ }
+
+ /**
+ * Gets the initial centers for bi-sect k-means
+ */
+ private[clustering]
+ def initChildrenCenter(clusters: Map[Long, BV[Double]]): Map[Long,
BV[Double]] = {
+ val rand = new XORShiftRandom()
+ rand.setSeed(this.seed)
+
+ clusters.flatMap { case (idx, center) =>
+ val childrenIndexes = Array(2 * idx, 2 * idx + 1)
+ val relativeErrorCoefficient = 0.001
+ Array(
+ (2 * idx, center.map(elm => elm - (elm * relativeErrorCoefficient
* rand.nextDouble()))),
+ (2 * idx + 1, center.map(elm => elm + (elm *
relativeErrorCoefficient * rand.nextDouble())))
+ )
+ }.toMap
+ }
+
+ /**
+ * Builds a cluster tree from a Map of clusters
+ *
+ * @param treeMap divided clusters as a Map class
+ * @param rootIndex index you want to start
+ * @param numClusters the number of clusters you want
+ * @return a built cluster tree
+ */
+ private[clustering]
+ def buildTree(treeMap: Map[Long, ClusterTree],
+ rootIndex: Long,
+ numClusters: Int): Option[ClusterTree] = {
+
+ // if there is no index in the Map
+ if (!treeMap.contains(rootIndex)) return None
+
+ // build a cluster tree if the queue is empty or until the number of
leaves clusters is enough
--- End diff --
grammar nit, change `until the number of leaves clusters` -> `until the
number of leaf clusters`
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]