Github user jkbradley commented on a diff in the pull request:
https://github.com/apache/spark/pull/5731#discussion_r36050382
--- Diff:
mllib/src/main/scala/org/apache/spark/ml/feature/VectorSlicer.scala ---
@@ -0,0 +1,153 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.ml.feature
+
+import org.apache.spark.annotation.Experimental
+import org.apache.spark.ml.Transformer
+import org.apache.spark.ml.attribute.AttributeGroup
+import org.apache.spark.ml.param.shared.{HasInputCol, HasOutputCol}
+import org.apache.spark.ml.param.{IntArrayParam, ParamMap,
StringArrayParam}
+import org.apache.spark.ml.util.{Identifiable, SchemaUtils}
+import org.apache.spark.mllib.linalg._
+import org.apache.spark.sql.DataFrame
+import org.apache.spark.sql.functions._
+import org.apache.spark.sql.types.StructType
+
+/**
+ * :: Experimental ::
+ * Given either indices or names, it takes a vector column and output a
vector column with the
+ * specified subset of features. Note that the vector column should
contain ML [[Attribute]].
+ */
+@Experimental
+final class VectorSlicer(override val uid: String)
+ extends Transformer with HasInputCol with HasOutputCol {
+
+ def this() = this(Identifiable.randomUID("vectorSlicer"))
+
+ /**
+ * An array of indices to select features from a vector column.
+ * @group param
+ */
+ val selectedIndices = new IntArrayParam(this, "selectedIndices",
+ "An array of indices to select features from a vector column",
+ (x: Array[Int]) => if (x.isEmpty) true else x.min >= 0)
+
+ setDefault(selectedIndices -> Array.empty[Int])
+
+ /** @group getParam */
+ def getSelectedIndices: Array[Int] = getOrDefault(selectedIndices)
+
+ /** @group setParam */
+ def setSelectedIndices(value: Array[Int]): this.type =
set(selectedIndices, value)
+
+ /**
+ * An array of feature names to select features from a vector column.
+ * @group param
+ */
+ val selectedNames = new StringArrayParam(this, "selectedNames",
+ "An array of feature names to select features from a vector column")
+
+ setDefault(selectedNames -> Array.empty[String])
+
+ /** @group getParam */
+ def getSelectedNames: Array[String] = getOrDefault(selectedNames)
+
+ /** @group setParam */
+ def setSelectedNames(value: Array[String]): this.type =
set(selectedNames, value)
+
+ /** @group setParam */
+ def setInputCol(value: String): this.type = set(inputCol, value)
+
+ /** @group setParam */
+ def setOutputCol(value: String): this.type = set(outputCol, value)
+
+ /**
+ * Slice a dense vector with an array of indices.
+ */
+ private def selectColumns(indices: Array[Int], features: DenseVector):
Vector = {
+ Vectors.dense(indices.map(features.apply))
+ }
+
+ /**
+ * Slice a sparse vector with a set of indices.
+ */
+ private def selectColumns(indices: Set[Int], features: SparseVector):
Vector = {
+ Vectors.sparse(
+ indices.size, features.indices.zip(features.values).filter(x =>
indices.contains(x._1)))
+ }
+
+ private def getFeatureIndicesFromNames(inputAttr: AttributeGroup):
Array[Int] = {
+ $(selectedNames).map(name => inputAttr.getAttr(name).index.get)
+ }
+
+ private def merge(xs: List[Int], ys: List[Int]): List[Int] = {
+ (xs, ys) match {
+ case (Nil, ys) => ys
+ case (xs, Nil) => xs
+ case (x :: xs1, y :: ys1) =>
+ if (x < y) x :: merge(xs1, ys)
+ else y :: merge(xs, ys1)
+ }
+ }
+
+ /**
+ * Union feature indices from user specified indices and indices that
transformed from user
+ * specified feature names. After the union process, indices are sorted
ASC and any potential
+ * duplicates are removed.
+ */
+ private def unionFeatureIndices(first: Array[Int], second: Array[Int]):
Array[Int] = {
+ merge(first.sorted.toList, second.sorted.toList).distinct.toArray
+ }
+
+ override def transform(dataset: DataFrame): DataFrame = {
+ transformSchema(dataset.schema)
+
+ val indices = $(selectedIndices)
+ val slicer = udf { vec: Vector =>
+ vec match {
+ case features: DenseVector => selectColumns(indices, features)
+ case features: SparseVector => selectColumns(indices.toSet,
features)
+ }
+ }
+ dataset.withColumn($(outputCol), slicer(dataset($(inputCol))))
+ }
+
+ override def transformSchema(schema: StructType): StructType = {
+ SchemaUtils.checkColumnType(schema, $(inputCol), new VectorUDT)
+ val inputAttr = AttributeGroup.fromStructField(schema($(inputCol)))
+ $(selectedNames).foreach { name =>
+ assert(inputAttr.hasAttr(name), s"Selected feature $name does not
belong in the vector.")
+ }
+ assert($(selectedIndices).max < inputAttr.size, s"Selected index out of
bound.")
--- End diff --
same for this check
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]