Github user feynmanliang commented on a diff in the pull request:

    https://github.com/apache/spark/pull/7854#discussion_r37826282
  
    --- Diff: python/pyspark/mllib/linalg/__init__.py ---
    @@ -461,32 +461,41 @@ def __init__(self, size, *args):
             self.size = int(size)
             """ Size of the vector. """
             assert 1 <= len(args) <= 2, "must pass either 2 or 3 arguments"
    -        if len(args) == 1:
    -            pairs = args[0]
    -            if type(pairs) == dict:
    -                pairs = pairs.items()
    -            pairs = sorted(pairs)
    -            self.indices = np.array([p[0] for p in pairs], dtype=np.int32)
    -            """ A list of indices corresponding to active entries. """
    -            self.values = np.array([p[1] for p in pairs], dtype=np.float64)
    -            """ A list of values corresponding to active entries. """
    +        if isinstance(args[0], bytes):
    +            assert isinstance(args[1], bytes), "values should be string 
too"
    +            if args[0]:
    +                self.indices = np.frombuffer(args[0], np.int32)
    +                self.values = np.frombuffer(args[1], np.float64)
    +            else:
    +                # np.frombuffer() doesn't work well with empty string in 
older version
    +                self.indices = np.array([], dtype=np.int32)
    +                self.values = np.array([], dtype=np.float64)
             else:
    -            if isinstance(args[0], bytes):
    -                assert isinstance(args[1], bytes), "values should be 
string too"
    -                if args[0]:
    -                    self.indices = np.frombuffer(args[0], np.int32)
    -                    self.values = np.frombuffer(args[1], np.float64)
    -                else:
    -                    # np.frombuffer() doesn't work well with empty string 
in older version
    -                    self.indices = np.array([], dtype=np.int32)
    -                    self.values = np.array([], dtype=np.float64)
    +            if len(args) == 1:
    +                args = args[0]
    +                if isinstance(args, dict):
    +                    args = args.items()
    +                args = list(zip(*args))
    +
    +            # Handle empty args case.
    +            if len(args) == 0:
    +                indices = []
    +                values = []
                 else:
    -                self.indices = np.array(args[0], dtype=np.int32)
    -                self.values = np.array(args[1], dtype=np.float64)
    -            assert len(self.indices) == len(self.values), "index and value 
arrays not same length"
    -            for i in xrange(len(self.indices) - 1):
    -                if self.indices[i] >= self.indices[i + 1]:
    -                    raise TypeError("indices array must be sorted")
    --- End diff --
    
    The Scala constructor for SparseVector also ensures [sorting of the 
indices](https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala#L283)
    
    CC @jkbradley 


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to