Github user feynmanliang commented on a diff in the pull request:
https://github.com/apache/spark/pull/7854#discussion_r37827836
--- Diff: python/pyspark/mllib/linalg/__init__.py ---
@@ -461,32 +461,41 @@ def __init__(self, size, *args):
self.size = int(size)
""" Size of the vector. """
assert 1 <= len(args) <= 2, "must pass either 2 or 3 arguments"
- if len(args) == 1:
- pairs = args[0]
- if type(pairs) == dict:
- pairs = pairs.items()
- pairs = sorted(pairs)
- self.indices = np.array([p[0] for p in pairs], dtype=np.int32)
- """ A list of indices corresponding to active entries. """
- self.values = np.array([p[1] for p in pairs], dtype=np.float64)
- """ A list of values corresponding to active entries. """
+ if isinstance(args[0], bytes):
+ assert isinstance(args[1], bytes), "values should be string
too"
+ if args[0]:
+ self.indices = np.frombuffer(args[0], np.int32)
+ self.values = np.frombuffer(args[1], np.float64)
+ else:
+ # np.frombuffer() doesn't work well with empty string in
older version
+ self.indices = np.array([], dtype=np.int32)
+ self.values = np.array([], dtype=np.float64)
else:
- if isinstance(args[0], bytes):
- assert isinstance(args[1], bytes), "values should be
string too"
- if args[0]:
- self.indices = np.frombuffer(args[0], np.int32)
- self.values = np.frombuffer(args[1], np.float64)
- else:
- # np.frombuffer() doesn't work well with empty string
in older version
- self.indices = np.array([], dtype=np.int32)
- self.values = np.array([], dtype=np.float64)
+ if len(args) == 1:
+ args = args[0]
+ if isinstance(args, dict):
+ args = args.items()
+ args = list(zip(*args))
+
+ # Handle empty args case.
+ if len(args) == 0:
+ indices = []
+ values = []
else:
- self.indices = np.array(args[0], dtype=np.int32)
- self.values = np.array(args[1], dtype=np.float64)
- assert len(self.indices) == len(self.values), "index and value
arrays not same length"
- for i in xrange(len(self.indices) - 1):
- if self.indices[i] >= self.indices[i + 1]:
- raise TypeError("indices array must be sorted")
--- End diff --
I'm not sure if we should expect users to supply sorted indices. There are
[tests](https://github.com/apache/spark/blob/a018b85716fd510ae95a3c66d676bbdb90f8d4e7/mllib/src/test/scala/org/apache/spark/mllib/linalg/VectorsSuite.scala#L53)
covering this use case.
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]