Github user sun-rui commented on a diff in the pull request:

    https://github.com/apache/spark/pull/9218#discussion_r43604767
  
    --- Diff: R/pkg/R/DataFrame.R ---
    @@ -276,6 +276,75 @@ setMethod("names<-",
                 }
               })
     
    +#' @rdname columns
    +#' @name colnames
    +setMethod("colnames",
    +          signature(x = "DataFrame"),
    +          function(x) {
    +            columns(x)
    +          })
    +
    +#' @rdname columns
    +#' @name colnames<-
    +setMethod("colnames<-",
    +          signature(x = "DataFrame", value = "character"),
    +          function(x, value) {
    +            sdf <- callJMethod(x@sdf, "toDF", as.list(value))
    +            dataFrame(sdf)
    +          })
    +
    +rToScalaTypes <- new.env()
    +rToScalaTypes[["integer"]]   <- "integer" # in R, integer is 32bit
    +rToScalaTypes[["numeric"]]   <- "double"  # in R, numeric == double which 
is 64bit
    +rToScalaTypes[["double"]]    <- "double"
    +rToScalaTypes[["character"]] <- "string"
    +rToScalaTypes[["logical"]]   <- "boolean"
    +
    +#' coltypes
    +#'
    +#' Set the column types of a DataFrame.
    +#'
    +#' @name coltypes
    +#' @param x (DataFrame)
    +#' @return value (character) A character vector with the target column 
types for the given
    +#'    DataFrame. Column types can be one of integer, numeric/double, 
character, logical, or NA
    +#'    to keep that column as-is.
    +#' @rdname coltypes
    +#' @aliases coltypes
    +#' @export
    +#' @examples
    +#'\dontrun{
    +#' sc <- sparkR.init()
    +#' sqlContext <- sparkRSQL.init(sc)
    +#' path <- "path/to/file.json"
    +#' df <- jsonFile(sqlContext, path)
    +#' coltypes(df) <- c("character", "integer")
    +#' coltypes(df) <- c(NA, "numeric")
    +#'}
    +setMethod("coltypes<-",
    +          signature(x = "DataFrame", value = "character"),
    +          function(x, value) {
    +            cols <- columns(x)
    +            ncols <- length(cols)
    +            if (length(value) == 0 || length(value) != ncols) {
    --- End diff --
    
    It is possible that a DataFrame has 0 column.
    So propose the code:
    ```
    if (length(value) != ncols) {
      stop("Length of type vector should match the number of columns for 
DataFrame")
    }
    if(ncols <= 0) {
      return(x)
    }


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to