Github user srowen commented on a diff in the pull request:

    https://github.com/apache/spark/pull/9756#discussion_r46605232
  
    --- Diff: 
mllib/src/test/scala/org/apache/spark/ml/regression/LinearRegressionSuite.scala 
---
    @@ -592,21 +594,47 @@ class LinearRegressionSuite
           }
     
           /*
    -         Use the following R code to generate model training results.
    -
    -         predictions <- predict(fit, newx=features)
    -         residuals <- label - predictions
    -         > mean(residuals^2) # MSE
    -         [1] 0.009720325
    -         > mean(abs(residuals)) # MAD
    -         [1] 0.07863206
    -         > cor(predictions, label)^2# r^2
    -                 [,1]
    -         s0 0.9998749
    +         # Use the following R code to generate model training results.
    +
    +         # path/part-00000 is the file generated by running 
LinearDataGenerator.generateLinearInput
    +         # as described before the beforeAll() method.
    +         d1 <- read.csv("path/part-00000", header=FALSE, 
stringsAsFactors=FALSE)
    +         fit <- glm(V1 ~ V2 + V3, data = d1, family = "gaussian")
    +         names(f1)[1] = c("V2")
    +         names(f1)[2] = c("V3")
    +         f1 <- data.frame(as.numeric(d1$V2), as.numeric(d1$V3))
    +         predictions <- predict(fit, newdata=f1)
    +         l1 <- as.numeric(d1$V1)
    +
    +         residuals <- l1 - predictions
    +         > mean(residuals^2)           # MSE
    +         [1] 0.00985449
    +         > mean(abs(residuals))        # MAD
    +         [1] 0.07961668
    +         > cor(predictions, l1)^2   # r^2
    +         [1] 0.9998737
    +
    +         > summary(fit)
    +
    +          Call:
    +          glm(formula = V1 ~ V2 + V3, family = "gaussian", data = d1)
    +
    +          Deviance Residuals:
    +               Min        1Q    Median        3Q       Max
    +          -0.47082  -0.06797   0.00002   0.06725   0.34635
    +
    +          Coefficients:
    +                       Estimate Std. Error t value Pr(>|t|)
    +          (Intercept) 6.3022157  0.0018600    3388   <2e-16 ***
    +          V2          4.6982442  0.0011805    3980   <2e-16 ***
    +          V3          7.1994344  0.0009044    7961   <2e-16 ***
    +          ---
    +
    +          ....
            */
    -      assert(model.summary.meanSquaredError ~== 0.00972035 relTol 1E-5)
    -      assert(model.summary.meanAbsoluteError ~== 0.07863206 relTol 1E-5)
    -      assert(model.summary.r2 ~== 0.9998749 relTol 1E-5)
    +      assert(model.summary.meanSquaredError ~== 0.00985449 relTol 1E-5)
    +      assert(model.summary.meanAbsoluteError ~== 0.07961668 relTol 1E-5)
    +      assert(model.summary.r2 ~== 0.9998737 relTol 1E-5)
    --- End diff --
    
    Yes, "or more" -- I'm just saying nobody expects an exact tolerance based 
on some principled analysis.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to