Github user viirya commented on a diff in the pull request:
https://github.com/apache/spark/pull/8734#discussion_r50617823
--- Diff:
mllib/src/test/scala/org/apache/spark/mllib/tree/DecisionTreeSuite.scala ---
@@ -331,12 +336,62 @@ class DecisionTreeSuite extends SparkFunSuite with
MLlibTestSparkContext {
assert(topNode.impurity !== -1.0)
// set impurity and predict for child nodes
- assert(topNode.leftNode.get.predict.predict === 0.0)
- assert(topNode.rightNode.get.predict.predict === 1.0)
+ if (topNode.leftNode.get.predict.predict === 0.0) {
+ assert(topNode.rightNode.get.predict.predict === 1.0)
+ } else {
+ assert(topNode.leftNode.get.predict.predict === 1.0)
+ assert(topNode.rightNode.get.predict.predict === 0.0)
+ }
assert(topNode.leftNode.get.impurity === 0.0)
assert(topNode.rightNode.get.impurity === 0.0)
}
+ test("Use soft prediction for binary classification with ordered
categorical features") {
--- End diff --
Hmm, I just want a test case to show it actually order the bins by soft
prediction. Although @jkbradley suggested we should use directly
`binsToBestSplit`, but in order to do that, we also need to expose many details
of `findBestSplits` too, e.g., `binSeqOp`, `getNodeToFeatures` and
`partitionAggregates`...etc.
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]