Github user rxin commented on a diff in the pull request:

    https://github.com/apache/spark/pull/1499#discussion_r15148079
  
    --- Diff: 
core/src/main/scala/org/apache/spark/util/collection/ExternalSorter.scala ---
    @@ -0,0 +1,390 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.util.collection
    +
    +import java.io._
    +import java.util.Comparator
    +
    +import scala.collection.mutable.ArrayBuffer
    +
    +import com.google.common.io.ByteStreams
    +
    +import org.apache.spark.{Aggregator, SparkEnv, Logging, Partitioner}
    +import org.apache.spark.serializer.Serializer
    +import org.apache.spark.storage.BlockId
    +
    +/**
    + * Sorts and potentially merges a number of key-value pairs of type (K, V) 
to produce key-combiner
    + * pairs of type (K, C). Uses a Partitioner to first group the keys into 
partitions, and then
    + * optionally sorts keys within each partition using a custom Comparator. 
Can output a single
    + * partitioned file with a different byte range for each partition, 
suitable for shuffle fetches.
    + *
    + * If combining is disabled, the type C must equal V -- we'll cast the 
objects at the end.
    + *
    + * @param aggregator optional Aggregator with combine functions to use for 
merging data
    + * @param partitioner optional partitioner; if given, sort by partition ID 
and then key
    + * @param ordering optional ordering to sort keys within each partition
    + * @param serializer serializer to use
    + */
    +private[spark] class ExternalSorter[K, V, C](
    +    aggregator: Option[Aggregator[K, V, C]] = None,
    +    partitioner: Option[Partitioner] = None,
    +    ordering: Option[Ordering[K]] = None,
    +    serializer: Option[Serializer] = None) extends Logging {
    +
    +  private val numPartitions = partitioner.map(_.numPartitions).getOrElse(1)
    +  private val shouldPartition = numPartitions > 1
    +
    +  private val blockManager = SparkEnv.get.blockManager
    +  private val diskBlockManager = blockManager.diskBlockManager
    +  private val ser = Serializer.getSerializer(serializer.getOrElse(null))
    +  private val serInstance = ser.newInstance()
    +
    +  private val conf = SparkEnv.get.conf
    +  private val fileBufferSize = conf.getInt("spark.shuffle.file.buffer.kb", 
100) * 1024
    +  private val serializerBatchSize = 
conf.getLong("spark.shuffle.spill.batchSize", 10000)
    +
    +  private def getPartition(key: K): Int = {
    +    if (shouldPartition) partitioner.get.getPartition(key) else 0
    +  }
    +
    +  // Data structures to store in-memory objects before we spill. Depending 
on whether we have an
    +  // Aggregator set, we either put objects into an AppendOnlyMap where we 
combine them, or we
    +  // store them in an array buffer.
    +  var map = new SizeTrackingAppendOnlyMap[(Int, K), C]
    +  var buffer = new SizeTrackingBuffer[((Int, K), C)]
    +
    +  // Track how many elements we've read before we try to estimate memory. 
Ideally we'd use
    +  // map.size or buffer.size for this, but because users' Aggregators can 
potentially increase
    +  // the size of a merged element when we add values with the same key, 
it's safer to track
    +  // elements read from the input iterator.
    +  private var elementsRead = 0L
    +  private val trackMemoryThreshold = 1000
    +
    +  // Spilling statistics
    +  private var spillCount = 0
    +  private var _memoryBytesSpilled = 0L
    +  private var _diskBytesSpilled = 0L
    +
    +  // Collective memory threshold shared across all running tasks
    +  private val maxMemoryThreshold = {
    +    val memoryFraction = conf.getDouble("spark.shuffle.memoryFraction", 
0.3)
    +    val safetyFraction = conf.getDouble("spark.shuffle.safetyFraction", 
0.8)
    +    (Runtime.getRuntime.maxMemory * memoryFraction * safetyFraction).toLong
    +  }
    +
    +  // For now, just compare them by partition; later we can compare by key 
as well
    +  private val comparator = new Comparator[((Int, K), C)] {
    +    override def compare(a: ((Int, K), C), b: ((Int, K), C)): Int = {
    +      a._1._1 - b._1._1
    +    }
    +  }
    +
    +  // Information about a spilled file. Includes sizes in bytes of 
"batches" written by the
    +  // serializer as we periodically reset its stream, as well as number of 
elements in each
    +  // partition, used to efficiently keep track of partitions when merging.
    +  private case class SpilledFile(
    +    file: File,
    +    blockId: BlockId,
    +    serializerBatchSizes: ArrayBuffer[Long],
    +    elementsPerPartition: Array[Long])
    +  private val spills = new ArrayBuffer[SpilledFile]
    +
    +  def write(records: Iterator[_ <: Product2[K, V]]): Unit = {
    +    // TODO: stop combining if we find that the reduction factor isn't high
    +    val shouldCombine = aggregator.isDefined
    +
    +    if (shouldCombine) {
    +      // Combine values in-memory first using our AppendOnlyMap
    +      val mergeValue = aggregator.get.mergeValue
    +      val createCombiner = aggregator.get.createCombiner
    +      var kv: Product2[K, V] = null
    +      val update = (hadValue: Boolean, oldValue: C) => {
    +        if (hadValue) mergeValue(oldValue, kv._2) else 
createCombiner(kv._2)
    +      }
    +      while (records.hasNext) {
    +        elementsRead += 1
    +        kv = records.next()
    +        map.changeValue((getPartition(kv._1), kv._1), update)
    +        maybeSpill(usingMap = true)
    +      }
    +    } else {
    +      // Stick values into our buffer
    +      while (records.hasNext) {
    +        elementsRead += 1
    +        val kv = records.next()
    +        buffer += (((getPartition(kv._1), kv._1), kv._2.asInstanceOf[C]))
    +        maybeSpill(usingMap = false)
    +      }
    +    }
    +  }
    +
    +  private def maybeSpill(usingMap: Boolean): Unit = {
    +    val collection: SizeTrackingCollection[((Int, K), C)] = if (usingMap) 
map else buffer
    +
    +    if (elementsRead > trackMemoryThreshold && collection.atGrowThreshold) 
{
    +      // TODO: This is code from ExternalAppendOnlyMap that doesn't work 
if there are two external
    +      // collections being used in the same task. However we'll just copy 
it for now.
    +
    +      val currentSize = collection.estimateSize()
    +      var shouldSpill = false
    +      val shuffleMemoryMap = SparkEnv.get.shuffleMemoryMap
    +
    +      // Atomically check whether there is sufficient memory in the global 
pool for
    +      // this map to grow and, if possible, allocate the required amount
    +      shuffleMemoryMap.synchronized {
    +        val threadId = Thread.currentThread().getId
    +        val previouslyOccupiedMemory = shuffleMemoryMap.get(threadId)
    +        val availableMemory = maxMemoryThreshold -
    +          (shuffleMemoryMap.values.sum - 
previouslyOccupiedMemory.getOrElse(0L))
    +
    +        // Assume map growth factor is 2x
    +        shouldSpill = availableMemory < currentSize * 2
    +        if (!shouldSpill) {
    +          shuffleMemoryMap(threadId) = currentSize * 2
    +        }
    +      }
    +      // Do not synchronize spills
    +      if (shouldSpill) {
    +        spill(currentSize, usingMap)
    +      }
    +    }
    +  }
    +
    +  /**
    +   * Spill the current in-memory collection to disk, adding a new file to 
spills, and clear it.
    +   *
    +   * @param usingMap whether we're using a map or buffer as our current 
in-memory collection
    +   */
    +  def spill(memorySize: Long, usingMap: Boolean): Unit = {
    +    val collection: SizeTrackingCollection[((Int, K), C)] = if (usingMap) 
map else buffer
    +    val memorySize = collection.estimateSize()
    +
    +    spillCount += 1
    +    logWarning("Spilling in-memory batch of %d MB to disk (%d spill%s so 
far)"
    +      .format(memorySize / (1024 * 1024), spillCount, if (spillCount > 1) 
"s" else ""))
    +    val (blockId, file) = diskBlockManager.createTempBlock()
    +    var writer = blockManager.getDiskWriter(blockId, file, ser, 
fileBufferSize)
    +    var objectsWritten = 0
    +
    +    // List of batch sizes (bytes) in the order they are written to disk
    +    val batchSizes = new ArrayBuffer[Long]
    +
    +    // How many elements we have in each partition
    +    // TODO: this could become a sparser data structure
    +    val elementsPerPartition = new Array[Long](numPartitions)
    +
    +    // Flush the disk writer's contents to disk, and update relevant 
variables
    +    def flush() = {
    +      writer.commit()
    +      val bytesWritten = writer.bytesWritten
    +      batchSizes.append(bytesWritten)
    +      _diskBytesSpilled += bytesWritten
    +      objectsWritten = 0
    +    }
    +
    +    try {
    +      val it = collection.destructiveSortedIterator(comparator)
    +      while (it.hasNext) {
    +        val elem = it.next()
    +        val partitionId = elem._1._1
    +        val key = elem._1._2
    +        val value = elem._2
    +        writer.write(key)
    +        writer.write(value)
    +        elementsPerPartition(partitionId) += 1
    +        objectsWritten += 1
    +
    +        if (objectsWritten == serializerBatchSize) {
    +          flush()
    +          writer.close()
    +          writer = blockManager.getDiskWriter(blockId, file, ser, 
fileBufferSize)
    +        }
    +      }
    +      if (objectsWritten > 0) {
    +        flush()
    +      }
    +      writer.close()
    +    } catch {
    +      case e: Exception =>
    +        writer.close()
    +        file.delete()
    +    }
    +
    +    if (usingMap) {
    +      map = new SizeTrackingAppendOnlyMap[(Int, K), C]
    +    } else {
    +      buffer = new SizeTrackingBuffer[((Int, K), C)]
    +    }
    +
    +    spills.append(SpilledFile(file, blockId, batchSizes, 
elementsPerPartition))
    +    _memoryBytesSpilled += memorySize
    +  }
    +
    +  /**
    +   * Merge a sequence of sorted files, giving an iterator over partitions 
and then over elements
    +   * inside each partition. This can be used to either write out a new 
file or return data to
    +   * the user.
    +   */
    +  def merge(spills: Seq[SpilledFile], inMemory: Iterator[((Int, K), C)])
    +      : Iterator[(Int, Iterator[Product2[K, C]])] = {
    --- End diff --
    
    I'd add @return to the javadoc to explain what the int represents.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

Reply via email to