Github user kiszk commented on a diff in the pull request:
https://github.com/apache/spark/pull/16391#discussion_r93826236
--- Diff:
sql/core/src/test/scala/org/apache/spark/sql/DatasetBenchmark.scala ---
@@ -170,36 +176,39 @@ object DatasetBenchmark {
val benchmark3 = aggregate(spark, numRows)
/*
- OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux
3.10.0-327.18.2.el7.x86_64
- Intel Xeon E3-12xx v2 (Ivy Bridge)
+ Java HotSpot(TM) 64-Bit Server VM 1.8.0_60-b27 on Mac OS X 10.12.1
+ Intel(R) Core(TM) i7-4960HQ CPU @ 2.60GHz
+
back-to-back map: Best/Avg Time(ms)
Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------
- RDD 3448 / 3646 29.0
34.5 1.0X
- DataFrame 2647 / 3116 37.8
26.5 1.3X
- Dataset 4781 / 5155 20.9
47.8 0.7X
+ RDD 3963 / 3976 25.2
39.6 1.0X
+ DataFrame 826 / 834 121.1
8.3 4.8X
+ Dataset 5178 / 5198 19.3
51.8 0.8X
--- End diff --
I noticed that Scala compiler automatically generates primitive version.
Current Spark eventually calls primitive version thru generic version `Object
apply(Object)`.
Here is a simple example. When we compile the following sample, we can find
that the following class is generated by scalac. Scalac automatically generates
a primitive version `int apply$mcII$sp(int)` that can be called by `int
apply(int)`.
We could infer this signature in Catalyst for simple cases.
Of course, I totally agree that the best solution is to analyze byte code
and turn it into expression. [This
](https://issues.apache.org/jira/browse/SPARK-14083)was already prototyped. Do
you think it is good time to make this prototype more robust now?
```java
test("ds") {
val ds = sparkContext.parallelize((1 to 10), 1).toDS
ds.map(i => i * 7).show
}
$ javap -c Test\$\$anonfun\$5\$\$anonfun\$apply\$mcV\$sp\$1.class
Compiled from "Test.scala"
public final class
org.apache.spark.sql.Test$$anonfun$5$$anonfun$apply$mcV$sp$1 extends
scala.runtime.AbstractFunction1$mcII$sp implements scala.Serializable {
public static final long serialVersionUID;
public final int apply(int);
Code:
0: aload_0
1: iload_1
2: invokevirtual #18 // Method apply$mcII$sp:(I)I
5: ireturn
public int apply$mcII$sp(int);
Code:
0: iload_1
1: bipush 7
3: imul
4: ireturn
public final java.lang.Object apply(java.lang.Object);
Code:
0: aload_0
1: aload_1
2: invokestatic #29 // Method
scala/runtime/BoxesRunTime.unboxToInt:(Ljava/lang/Object;)I
5: invokevirtual #31 // Method apply:(I)I
8: invokestatic #35 // Method
scala/runtime/BoxesRunTime.boxToInteger:(I)Ljava/lang/Integer;
11: areturn
public
org.apache.spark.sql.Test$$anonfun$5$$anonfun$apply$mcV$sp$1(org.apache.spark.sql.Test$$anonfun$5);
Code:
0: aload_0
1: invokespecial #42 // Method
scala/runtime/AbstractFunction1$mcII$sp."<init>":()V
4: return
}
```
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]