Github user sethah commented on a diff in the pull request:

    https://github.com/apache/spark/pull/17117#discussion_r104829816
  
    --- Diff: 
mllib/src/test/scala/org/apache/spark/ml/clustering/KMeansSuite.scala ---
    @@ -152,6 +158,35 @@ class KMeansSuite extends SparkFunSuite with 
MLlibTestSparkContext with DefaultR
         val kmeans = new KMeans()
         testEstimatorAndModelReadWrite(kmeans, dataset, 
KMeansSuite.allParamSettings, checkModelData)
       }
    +
    +  test("training with initial model") {
    +    val kmeans = new KMeans().setK(2).setSeed(1)
    +    val model1 = kmeans.fit(rData)
    +    val model2 = 
kmeans.setInitMode("initialModel").setInitialModel(model1).fit(rData)
    +    model2.clusterCenters.zip(model1.clusterCenters)
    +      .foreach { case (center2, center1) => assert(center2 ~== center1 
absTol 1E-8) }
    +  }
    +
    +  test("training with initial model, error cases") {
    +    val kmeans = new KMeans().setK(k).setSeed(1).setMaxIter(1)
    +
    +    // Sets initMode with 'initialModel', but does not specify initial 
model.
    +    intercept[IllegalArgumentException] {
    --- End diff --
    
    Yeah, I think the general idea laid out in the previous PR is preferable. 
As you and DB say, if you'd like to make the second `.setInitMode` overwrite 
the initial model then that is fine. With that change, then the behavior I 
would prefer is:
    
    ````scala
      test("params") {
        val initialK = 3
        val initialEstimator = new KMeans()
          .setK(initialK)
        val initialModel = initialEstimator.fit(dataset)
    
        val km = new KMeans()
          .setK(initialK + 1)
          .setInitMode(MLlibKMeans.RANDOM)
    
        assert(km.getK === initialK + 1)
        assert(km.getInitMode === MLlibKMeans.RANDOM)
    
        km.setInitialModel(initialModel)
    
        // initialModel sets k and init mode
        assert(km.getInitMode === MLlibKMeans.K_MEANS_INITIAL_MODEL)
        assert(km.getK === initialK)
        assert(km.getInitialModel.getK === initialK)
    
        // setting k is ignored
        km.setK(initialK + 1)
        assert(km.getK === initialK)
    
        // this should work since we already set initialModel
        km.setInitMode(MLlibKMeans.K_MEANS_INITIAL_MODEL)
    
        // changing initMode clears the initial model
        km.setInitMode(MLlibKMeans.RANDOM)
        assert(km.getInitMode === MLlibKMeans.RANDOM)
        assert(!km.isSet(km.initialModel))
        // k is retained from initial model
        assert(km.getK === initialK)
        // now k can be set
        km.setK(initialK + 1)
        assert(km.getK === initialK + 1)
    
        // kmeans should throw an error since we shouldn't be allowed to set 
init mode to "initialModel"
        intercept[IllegalArgumentException] {
          km.setInitMode(MLlibKMeans.K_MEANS_INITIAL_MODEL)
        }
      }
    ````


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to