Github user dvogelbacher commented on the issue:

    https://github.com/apache/spark/pull/20779
  
    I was able to reproduce just now without changing the value of the constant 
(i.e., with unmodified code from master):
    
    > ➜  spark git:(master) ./bin/spark-shell
    18/03/09 11:11:02 WARN Utils: Your hostname, dvogelbac resolves to a 
loopback address: 127.0.0.1; using 10.111.11.111 instead (on interface en0)
    18/03/09 11:11:02 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to 
another address
    18/03/09 11:11:02 WARN NativeCodeLoader: Unable to load native-hadoop 
library for your platform... using builtin-java classes where applicable
    Using Spark's default log4j profile: 
org/apache/spark/log4j-defaults.properties
    Setting default log level to "WARN".
    To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use 
setLogLevel(newLevel).
    Spark context Web UI available at http://10.111.11.111:4040
    Spark context available as 'sc' (master = local[*], app id = 
local-1520593867110).
    Spark session available as 'spark'.
    Welcome to
          ____              __
         / __/__  ___ _____/ /__
        _\ \/ _ \/ _ `/ __/  '_/
       /___/ .__/\_,_/_/ /_/\_\   version 2.4.0-SNAPSHOT
          /_/
    
    Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 
1.8.0_121)
    Type in expressions to have them evaluated.
    Type :help for more information.
    
    scala> spark.conf.set("spark.sql.shuffle.partitions", 1)
    
    scala> val df_pet_age = Seq((8, "bat"), (15, "mouse"), (5, 
"horse")).toDF("age", "name")
    df_pet_age: org.apache.spark.sql.DataFrame = [age: int, name: string]
    
    scala> 
df_pet_age.groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").
 
alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("
 
age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).
 
groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).groupBy("name").agg(avg("age").alias("age")).limit(1).show()
    [Stage 1:>                                                          (0 + 1) 
/ 1]18/03/09 11:11:21 ERROR Executor: Exception in task 0.0 in stage 1.0 (TID 3)
    java.lang.IllegalAccessError: tried to access method 
org.apache.spark.sql.execution.BufferedRowIterator.shouldStop()Z from class 
org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage2$agg_NestedClass
        at 
org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage2$agg_NestedClass.agg_doAggregateWithKeys2$(Unknown
 Source)
        at 
org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage2$agg_NestedClass.agg_doAggregateWithKeys1$(Unknown
 Source)
        at 
org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage2$agg_NestedClass.agg_doAggregateWithKeys$(Unknown
 Source)
        at 
org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage2.processNext(Unknown
 Source)
        at 
org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
        at 
org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$11$$anon$1.hasNext(WholeStageCodegenExec.scala:616)
        at 
org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:253)
        at 
org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
        at 
org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
        at 
org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:109)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)


---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to