Github user arunmahadevan commented on a diff in the pull request:

    https://github.com/apache/spark/pull/21200#discussion_r185329883
  
    --- Diff: 
sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/continuous/ContinuousDataSourceRDD.scala
 ---
    @@ -0,0 +1,153 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.sql.execution.streaming.continuous
    +
    +import java.util.concurrent.TimeUnit
    +import javax.annotation.concurrent.GuardedBy
    +
    +import scala.collection.mutable
    +
    +import org.apache.spark._
    +import org.apache.spark.internal.Logging
    +import org.apache.spark.rdd.RDD
    +import org.apache.spark.sql.{Row, SQLContext}
    +import org.apache.spark.sql.catalyst.expressions.UnsafeRow
    +import 
org.apache.spark.sql.execution.datasources.v2.{DataSourceRDDPartition, 
RowToUnsafeDataReader}
    +import org.apache.spark.sql.sources.v2.reader._
    +import 
org.apache.spark.sql.sources.v2.reader.streaming.{ContinuousDataReader, 
PartitionOffset}
    +import org.apache.spark.util.ThreadUtils
    +
    +/**
    + * The bottom-most RDD of a continuous processing read task. Wraps a 
[[ContinuousQueuedDataReader]]
    + * to read from the remote source, and polls that queue for incoming rows.
    + *
    + * Note that continuous processing calls compute() multiple times, and the 
same
    + * [[ContinuousQueuedDataReader]] instance will/must be shared between 
each call for the same split.
    + */
    +class ContinuousDataSourceRDD(
    +    sc: SparkContext,
    +    sqlContext: SQLContext,
    +    @transient private val readerFactories: 
Seq[DataReaderFactory[UnsafeRow]])
    +  extends RDD[UnsafeRow](sc, Nil) {
    +
    +  private val dataQueueSize = 
sqlContext.conf.continuousStreamingExecutorQueueSize
    +  private val epochPollIntervalMs = 
sqlContext.conf.continuousStreamingExecutorPollIntervalMs
    +
    +  // When computing the same partition multiple times, we need to use the 
same data reader to
    +  // do so for continuity in offsets.
    +  @GuardedBy("dataReaders")
    +  private val dataReaders: mutable.Map[Partition, 
ContinuousQueuedDataReader] =
    +    mutable.Map[Partition, ContinuousQueuedDataReader]()
    +
    +  override protected def getPartitions: Array[Partition] = {
    +    readerFactories.zipWithIndex.map {
    +      case (readerFactory, index) => new DataSourceRDDPartition(index, 
readerFactory)
    +    }.toArray
    +  }
    +
    +  override def compute(split: Partition, context: TaskContext): 
Iterator[UnsafeRow] = {
    +    // If attempt number isn't 0, this is a task retry, which we don't 
support.
    +    if (context.attemptNumber() != 0) {
    +      throw new ContinuousTaskRetryException()
    +    }
    +
    +    val readerForPartition = dataReaders.synchronized {
    +      if (!dataReaders.contains(split)) {
    +        dataReaders.put(
    +          split,
    +          new ContinuousQueuedDataReader(split, context, dataQueueSize, 
epochPollIntervalMs))
    +      }
    +
    +      dataReaders(split)
    +    }
    +
    +    val coordinatorId = 
context.getLocalProperty(ContinuousExecution.EPOCH_COORDINATOR_ID_KEY)
    +    val epochEndpoint = EpochCoordinatorRef.get(coordinatorId, 
SparkEnv.get)
    +    new Iterator[UnsafeRow] {
    +      private val POLL_TIMEOUT_MS = 1000
    +
    +      private var currentEntry: (UnsafeRow, PartitionOffset) = _
    +
    +      override def hasNext(): Boolean = {
    +        while (currentEntry == null) {
    +          if (context.isInterrupted() || context.isCompleted()) {
    +            currentEntry = (null, null)
    +          }
    +          if (readerForPartition.dataReaderFailed.get()) {
    +            throw new SparkException(
    +              "data read failed", 
readerForPartition.dataReaderThread.failureReason)
    +          }
    +          if (readerForPartition.epochPollFailed.get()) {
    +            throw new SparkException(
    +              "epoch poll failed", 
readerForPartition.epochPollRunnable.failureReason)
    +          }
    +          currentEntry = readerForPartition.queue.poll(POLL_TIMEOUT_MS, 
TimeUnit.MILLISECONDS)
    +        }
    +
    +        currentEntry match {
    +          // epoch boundary marker
    +          case (null, null) =>
    +            epochEndpoint.send(ReportPartitionOffset(
    +              context.partitionId(),
    +              readerForPartition.currentEpoch,
    +              readerForPartition.currentOffset))
    +            readerForPartition.currentEpoch += 1
    +            currentEntry = null
    +            false
    --- End diff --
    
    I think it will need a bigger discussion to understand the pros/cons of 
iterator approach and the push vs pull models. In streaming the sources 
continuously generate data so has traditionally been push systems. It may not 
be best to request the source for data only when the downstream requires it so 
thats why theres need for queues at the reader effectively making it a kind of 
push system. I think we can take this discussion outside the PR.


---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to