Github user HeartSaVioR commented on a diff in the pull request:

    https://github.com/apache/spark/pull/21200#discussion_r185333320
  
    --- Diff: 
sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/continuous/ContinuousDataSourceRDD.scala
 ---
    @@ -0,0 +1,153 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.sql.execution.streaming.continuous
    +
    +import java.util.concurrent.TimeUnit
    +import javax.annotation.concurrent.GuardedBy
    +
    +import scala.collection.mutable
    +
    +import org.apache.spark._
    +import org.apache.spark.internal.Logging
    +import org.apache.spark.rdd.RDD
    +import org.apache.spark.sql.{Row, SQLContext}
    +import org.apache.spark.sql.catalyst.expressions.UnsafeRow
    +import 
org.apache.spark.sql.execution.datasources.v2.{DataSourceRDDPartition, 
RowToUnsafeDataReader}
    +import org.apache.spark.sql.sources.v2.reader._
    +import 
org.apache.spark.sql.sources.v2.reader.streaming.{ContinuousDataReader, 
PartitionOffset}
    +import org.apache.spark.util.ThreadUtils
    +
    +/**
    + * The bottom-most RDD of a continuous processing read task. Wraps a 
[[ContinuousQueuedDataReader]]
    + * to read from the remote source, and polls that queue for incoming rows.
    + *
    + * Note that continuous processing calls compute() multiple times, and the 
same
    + * [[ContinuousQueuedDataReader]] instance will/must be shared between 
each call for the same split.
    + */
    +class ContinuousDataSourceRDD(
    +    sc: SparkContext,
    +    sqlContext: SQLContext,
    +    @transient private val readerFactories: 
Seq[DataReaderFactory[UnsafeRow]])
    +  extends RDD[UnsafeRow](sc, Nil) {
    +
    +  private val dataQueueSize = 
sqlContext.conf.continuousStreamingExecutorQueueSize
    +  private val epochPollIntervalMs = 
sqlContext.conf.continuousStreamingExecutorPollIntervalMs
    +
    +  // When computing the same partition multiple times, we need to use the 
same data reader to
    +  // do so for continuity in offsets.
    +  @GuardedBy("dataReaders")
    +  private val dataReaders: mutable.Map[Partition, 
ContinuousQueuedDataReader] =
    +    mutable.Map[Partition, ContinuousQueuedDataReader]()
    +
    +  override protected def getPartitions: Array[Partition] = {
    +    readerFactories.zipWithIndex.map {
    +      case (readerFactory, index) => new DataSourceRDDPartition(index, 
readerFactory)
    +    }.toArray
    +  }
    +
    +  override def compute(split: Partition, context: TaskContext): 
Iterator[UnsafeRow] = {
    +    // If attempt number isn't 0, this is a task retry, which we don't 
support.
    +    if (context.attemptNumber() != 0) {
    +      throw new ContinuousTaskRetryException()
    +    }
    +
    +    val readerForPartition = dataReaders.synchronized {
    +      if (!dataReaders.contains(split)) {
    +        dataReaders.put(
    +          split,
    +          new ContinuousQueuedDataReader(split, context, dataQueueSize, 
epochPollIntervalMs))
    +      }
    +
    +      dataReaders(split)
    +    }
    +
    +    val coordinatorId = 
context.getLocalProperty(ContinuousExecution.EPOCH_COORDINATOR_ID_KEY)
    +    val epochEndpoint = EpochCoordinatorRef.get(coordinatorId, 
SparkEnv.get)
    +    new Iterator[UnsafeRow] {
    +      private val POLL_TIMEOUT_MS = 1000
    +
    +      private var currentEntry: (UnsafeRow, PartitionOffset) = _
    +
    +      override def hasNext(): Boolean = {
    +        while (currentEntry == null) {
    +          if (context.isInterrupted() || context.isCompleted()) {
    +            currentEntry = (null, null)
    +          }
    +          if (readerForPartition.dataReaderFailed.get()) {
    +            throw new SparkException(
    +              "data read failed", 
readerForPartition.dataReaderThread.failureReason)
    +          }
    +          if (readerForPartition.epochPollFailed.get()) {
    +            throw new SparkException(
    +              "epoch poll failed", 
readerForPartition.epochPollRunnable.failureReason)
    +          }
    +          currentEntry = readerForPartition.queue.poll(POLL_TIMEOUT_MS, 
TimeUnit.MILLISECONDS)
    +        }
    +
    +        currentEntry match {
    +          // epoch boundary marker
    +          case (null, null) =>
    +            epochEndpoint.send(ReportPartitionOffset(
    +              context.partitionId(),
    +              readerForPartition.currentEpoch,
    +              readerForPartition.currentOffset))
    +            readerForPartition.currentEpoch += 1
    +            currentEntry = null
    +            false
    --- End diff --
    
    > I don't think there's any expectation here that upstream systems will 
fill as many records as possible.
    
    ContinuousDataSourceRDD works like push model, but when we consider 
multiple stages, unlike new source and sink, intermediate stages don't know 
about the continuous mode and try to keep working with the pull model.
    
    Btw, totally agreed that the discussion here is going to be much bigger 
(and maybe out of topic) than the PR proposes to fix. We could discuss this 
again via SPARK-24036.


---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to