imatiach-msft commented on a change in pull request #17084:
[SPARK-24103][ML][MLLIB] ML Evaluators should use weight column - added weight
column for binary classification evaluator
URL: https://github.com/apache/spark/pull/17084#discussion_r257111949
##########
File path:
mllib/src/main/scala/org/apache/spark/mllib/evaluation/BinaryClassificationMetrics.scala
##########
@@ -41,9 +41,18 @@ import org.apache.spark.sql.DataFrame
* partition boundaries.
*/
@Since("1.0.0")
-class BinaryClassificationMetrics @Since("1.3.0") (
- @Since("1.3.0") val scoreAndLabels: RDD[(Double, Double)],
- @Since("1.3.0") val numBins: Int) extends Logging {
+class BinaryClassificationMetrics @Since("3.0.0") (
+ @Since("1.3.0") val scoreAndLabelsWithOptWeight: RDD[_ <: Product],
Review comment:
no we currently do not check for the weight > 0, should that live in
BinaryClassificationMetrics? I should probably update the other metrics
classes as well then?
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
With regards,
Apache Git Services
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]