mgaido91 commented on a change in pull request #23773: [SPARK-26721][ML] Avoid 
per-tree normalization in featureImportance for GBT
URL: https://github.com/apache/spark/pull/23773#discussion_r257304015
 
 

 ##########
 File path: 
mllib/src/test/scala/org/apache/spark/ml/classification/GBTClassifierSuite.scala
 ##########
 @@ -363,7 +363,8 @@ class GBTClassifierSuite extends MLTest with 
DefaultReadWriteTest {
     val gbtWithFeatureSubset = gbt.setFeatureSubsetStrategy("1")
     val importanceFeatures = gbtWithFeatureSubset.fit(df).featureImportances
     val mostIF = importanceFeatures.argmax
-    assert(mostImportantFeature !== mostIF)
+    assert(mostIF === 1)
 
 Review comment:
   The assertion is there to check that a different subset strategy actually 
produces different results. In particular, in the first case, the importances 
vector is [1.0, 0.0, ...] while in the second case more features are used 
(because the trees can check a random variable at time), so the vector is 
something like [0.7, ...]. Hence this assertion makes sense in order to check 
that the featureSubset strategy is properly taken in account.

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to