mgaido91 commented on a change in pull request #23773: [SPARK-26721][ML] Avoid 
per-tree normalization in featureImportance for GBT
URL: https://github.com/apache/spark/pull/23773#discussion_r257454753
 
 

 ##########
 File path: 
mllib/src/test/scala/org/apache/spark/ml/classification/GBTClassifierSuite.scala
 ##########
 @@ -363,7 +363,8 @@ class GBTClassifierSuite extends MLTest with 
DefaultReadWriteTest {
     val gbtWithFeatureSubset = gbt.setFeatureSubsetStrategy("1")
     val importanceFeatures = gbtWithFeatureSubset.fit(df).featureImportances
     val mostIF = importanceFeatures.argmax
-    assert(mostImportantFeature !== mostIF)
+    assert(mostIF === 1)
 
 Review comment:
   Well, the seed is fixed, so the UT is actually deterministic and there is no 
flakyness. Despite with a different seed the result may be different, I'd 
consider very unlikely anyway that 1 would not be the most important one in any 
case, since it is really the ground truth in this case.

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to