gagafunctor commented on a change in pull request #23983: [SPARK-26881][core] 
Heuristic for tree aggregate depth
URL: https://github.com/apache/spark/pull/23983#discussion_r263817158
 
 

 ##########
 File path: core/src/main/scala/org/apache/spark/rdd/RDD.scala
 ##########
 @@ -1178,6 +1178,37 @@ abstract class RDD[T: ClassTag](
     }
   }
 
+  /**
+   * Computing desired tree aggregate depth necessary to avoid exceeding
+   * driver.MaxResultSize during aggregation.
+   * Based on the formulae: (numPartitions)^(1/depth) * objectSize <= 
DriverMaxResultSize
+   * @param aggregatedObjectSizeInMb the size, in megabytes, of the object 
being tree aggregated
+   * @param numPartitions the number of partitions for which to aggregate 
partial results
+   * @param maxDriverResultSizeInMb the value of the parameter 
spark.driver.maxResultSize in MB
+   */
+  def getTreeAggregateIdealDepth(
+      aggregatedObjectSizeInMb: Int,
+      numPartitions: Int = getNumPartitions,
+      maxDriverResultSizeInMb: Int = Utils.memoryStringToMb(
+        context.getConf.get("spark.driver.maxResultSize"))): Int = {
 
 Review comment:
   So,playing in UTests with different ways to play with this config field made 
me realize something...
   I tried the following:
   *conf.set(""spark.driver.maxResultSize", "10g")* Then I get:
   - *conf.get(MAX_RESULT_SIZE)* returns 10737418240 -> it's in Bytes
   - *Utils.memoryStringToMb(conf.get("spark.driver.maxResultSize"))* returns 
10240 -> It's in megabytes 
   
   So the units are as expected, but the results are a bit different from each 
other...
   
   -> I'm not sure what's the best way to get the maxResultSize in Mb from code 
here:
   - Utils.memoryStringToMb(conf.get("spark.driver.maxResultSize"))
   OR
   - conf.get(MAX_RESULT_SIZE) / (1000L * 1000L * 1000L)
   
   ??
   (Knowing that these might yield slightly different results, but I don't know 
if it's a big deal)
   

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to