Github user tdas commented on a diff in the pull request:

    https://github.com/apache/spark/pull/3798#discussion_r23742746
  
    --- Diff: 
external/kafka/src/main/scala/org/apache/spark/streaming/kafka/KafkaUtils.scala 
---
    @@ -144,4 +150,116 @@ object KafkaUtils {
         createStream[K, V, U, T](
           jssc.ssc, kafkaParams.toMap, 
Map(topics.mapValues(_.intValue()).toSeq: _*), storageLevel)
       }
    +
    +  /** A batch-oriented interface for consuming from Kafka.
    +   * Starting and ending offsets are specified in advance,
    +   * so that you can control exactly-once semantics.
    +   * @param sc SparkContext object
    +   * @param kafkaParams Kafka <a 
href="http://kafka.apache.org/documentation.html#configuration";>
    +   * configuration parameters</a>.
    +   *   Requires "metadata.broker.list" or "bootstrap.servers" to be set 
with Kafka broker(s),
    +   *   NOT zookeeper servers, specified in host1:port1,host2:port2 form.
    +   * @param batch Each OffsetRange in the batch corresponds to a
    +   *   range of offsets for a given Kafka topic/partition
    +   * @param messageHandler function for translating each message into the 
desired type
    +   */
    +  def createRDD[
    +    K: ClassTag,
    +    V: ClassTag,
    +    U <: Decoder[_]: ClassTag,
    +    T <: Decoder[_]: ClassTag,
    +    R: ClassTag] (
    +      sc: SparkContext,
    +      kafkaParams: Map[String, String],
    +      batch: Array[OffsetRange],
    +      messageHandler: MessageAndMetadata[K, V] => R
    +  ): RDD[R] = {
    +    val parts = batch.zipWithIndex.map { case (o, i) =>
    +        new KafkaRDDPartition(i, o.topic, o.partition, o.fromOffset, 
o.untilOffset, o.host, o.port)
    +    }.toArray
    +    new KafkaRDD[K, V, U, T, R](sc, kafkaParams, parts, messageHandler)
    +  }
    +
    +  /**
    +   * This DOES NOT guarantee that side-effects of an action will see each 
message exactly once.
    --- End diff --
    
    Alright, I understand your point of view :) Then lets consider other 
alternate names. We could simply name it generic `createNewStream`. Which is 
okay, because eventually, if all performance and other issues are flattened 
out, we would like to graduate it from "experimental feature" (Spark 1.3 will 
mark it experimental) to the default supported implementation of kafka stream. 
So "new stream" may be a natural indicator about which one to use. 


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to