Github user jkbradley commented on a diff in the pull request:
https://github.com/apache/spark/pull/3637#discussion_r23891545
--- Diff:
examples/src/main/scala/org/apache/spark/examples/ml/DeveloperApiExample.scala
---
@@ -0,0 +1,181 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.examples.ml
+
+import org.apache.spark.{SparkConf, SparkContext}
+import org.apache.spark.ml.classification.{Classifier, ClassifierParams,
ClassificationModel}
+import org.apache.spark.ml.param.{Params, IntParam, ParamMap}
+import org.apache.spark.mllib.linalg.{BLAS, Vector, Vectors}
+import org.apache.spark.mllib.regression.LabeledPoint
+import org.apache.spark.sql.{DataFrame, Row, SQLContext}
+
+
+/**
+ * A simple example demonstrating how to write your own learning algorithm
using Estimator,
+ * Transformer, and other abstractions.
+ * This mimics [[org.apache.spark.ml.classification.LogisticRegression]].
+ * Run with
+ * {{{
+ * bin/run-example ml.DeveloperApiExample
+ * }}}
+ */
+object DeveloperApiExample {
+
+ def main(args: Array[String]) {
+ val conf = new SparkConf().setAppName("DeveloperApiExample")
+ val sc = new SparkContext(conf)
+ val sqlContext = new SQLContext(sc)
+ import sqlContext._
+
+ // Prepare training data.
+ val training = sparkContext.parallelize(Seq(
+ LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)),
+ LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)),
+ LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)),
+ LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5))))
+
+ // Create a LogisticRegression instance. This instance is an
Estimator.
+ val lr = new MyLogisticRegression()
+ // Print out the parameters, documentation, and any default values.
+ println("MyLogisticRegression parameters:\n" + lr.explainParams() +
"\n")
+
+ // We may set parameters using setter methods.
+ lr.setMaxIter(10)
+
+ // Learn a LogisticRegression model. This uses the parameters stored
in lr.
+ val model = lr.fit(training)
+
+ // Prepare test data.
+ val test = sparkContext.parallelize(Seq(
+ LabeledPoint(1.0, Vectors.dense(-1.0, 1.5, 1.3)),
+ LabeledPoint(0.0, Vectors.dense(3.0, 2.0, -0.1)),
+ LabeledPoint(1.0, Vectors.dense(0.0, 2.2, -1.5))))
+
+ // Make predictions on test data.
+ val sumPredictions: Double = model.transform(test)
+ .select("features", "label", "prediction")
+ .collect()
+ .map { case Row(features: Vector, label: Double, prediction: Double)
=>
+ prediction
+ }.sum
+ assert(sumPredictions == 0.0,
+ "MyLogisticRegression predicted something other than 0, even though
all weights are 0!")
+
+ sc.stop()
+ }
+}
+
+/**
+ * Example of defining a parameter trait for a user-defined type of
[[Classifier]].
+ *
+ * NOTE: This is private since it is an example. In practice, you may not
want it to be private.
+ */
+private trait MyLogisticRegressionParams extends ClassifierParams {
+
+ /**
+ * Param for max number of iterations
+ *
+ * NOTE: The usual way to add a parameter to a model or algorithm is to
include:
+ * - val myParamName: ParamType
+ * - def getMyParamName
+ * - def setMyParamName
--- End diff --
Will do
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]