zhengruifeng commented on a change in pull request #26803: [SPARK-30178][ML] 
RobustScaler support large numFeatures
URL: https://github.com/apache/spark/pull/26803#discussion_r355827500
 
 

 ##########
 File path: mllib/src/main/scala/org/apache/spark/ml/feature/RobustScaler.scala
 ##########
 @@ -147,49 +146,43 @@ class RobustScaler (override val uid: String)
 
   override def fit(dataset: Dataset[_]): RobustScalerModel = {
     transformSchema(dataset.schema, logging = true)
-    val localRelativeError = $(relativeError)
 
-    val summaries = dataset.select($(inputCol)).rdd.map {
-      case Row(vec: Vector) => vec
-    }.mapPartitions { iter =>
-      var agg: Array[QuantileSummaries] = null
-      while (iter.hasNext) {
-        val vec = iter.next()
-        if (agg == null) {
-          agg = Array.fill(vec.size)(
-            new QuantileSummaries(QuantileSummaries.defaultCompressThreshold, 
localRelativeError))
-        }
-        require(vec.size == agg.length,
-          s"Number of dimensions must be ${agg.length} but got ${vec.size}")
-        var i = 0
-        while (i < vec.size) {
-          agg(i) = agg(i).insert(vec(i))
-          i += 1
-        }
-      }
-
-      if (agg == null) {
-        Iterator.empty
-      } else {
-        Iterator.single(agg.map(_.compress))
-      }
-    }.treeReduce { (agg1, agg2) =>
-      require(agg1.length == agg2.length)
-      var i = 0
-      while (i < agg1.length) {
-        agg1(i) = agg1(i).merge(agg2(i))
-        i += 1
-      }
-      agg1
-    }
+    val vectors = dataset.select($(inputCol)).rdd.map { case Row(vec: Vector) 
=> vec }
+    val numFeatures = MetadataUtils.getNumFeatures(dataset.schema($(inputCol)))
+      .getOrElse(vectors.first().size)
 
-    val (range, median) = summaries.map { s =>
-      (s.query($(upper)).get - s.query($(lower)).get,
-        s.query(0.5).get)
-    }.unzip
+    val localRelativeError = $(relativeError)
+    val localUpper = $(upper)
+    val localLower = $(lower)
+
+    val collected = vectors.flatMap { vec =>
+      require(vec.size == numFeatures,
+        s"Number of dimensions must be $numFeatures but got ${vec.size}")
+      Iterator.range(0, numFeatures).map { i => (i, vec(i)) }
+    }.aggregateByKey(
+      new QuantileSummaries(QuantileSummaries.defaultCompressThreshold, 
localRelativeError))(
+      seqOp = (s, v) => s.insert(v),
+      combOp = (s1, s2) => s1.compress.merge(s2.compress)
+    ).mapValues{ s =>
+      // confirm compression before query
+      val s2 = s.compress
 
 Review comment:
   I also need to call `compress`, otherwise it will cause testsuite fails due 
to calling query before compression. 

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to