#11836: PARI bug in gens_reduced()
-----------------------------------+----------------------------------------
   Reporter:  mirela               |          Owner:  malb      
       Type:  defect               |         Status:  new       
   Priority:  major                |      Milestone:  sage-4.7.2
  Component:  commutative algebra  |       Keywords:            
Work_issues:                       |       Upstream:  N/A       
   Reviewer:                       |         Author:            
     Merged:                       |   Dependencies:            
-----------------------------------+----------------------------------------
Changes (by leif):

 * cc: jdemeyer (added)


Old description:

> Even with proof=false pari can not compute the reduced generators of the
> ideal below.
>
> {{{
> sage: E = EllipticCurve('57a1')
> sage: R.<x> = QQ['x']
> sage: L.<b3> = NumberField(x^10 - 10*x^8 - 20*x^7 + 165*x^6 - 12*x^5 -
> 760*x^3 + 2220*x^2 + 5280*x + 7744)
> sage: z_x = -96698852571685/2145672615243325696*b3^9 +
> 2472249905907/195061146840302336*b3^8 +
> 916693155514421/2145672615243325696*b3^7 +
> 1348520950997779/2145672615243325696*b3^6 -
> 82344497086595/12191321677518896*b3^5 +
> 2627122040194919/536418153810831424*b3^4 -
> 452199105143745/48765286710075584*b3^3 +
> 4317002771457621/536418153810831424*b3^2 +
> 2050725777454935/67052269226353928*b3 + 3711967683469209/3047830419379724
> sage: E2 = E.change_ring(L)
> sage: z = E2.lift_x(z_x)
> sage: z3=3*z
> sage: OL = L.OK()
> sage: proof.number_field(False)
> sage: gcd3 = OL.fractional_ideal(z3[0], z3[1]).gens_reduced()[0]
>   ***   Warning: precision too low for generators, not given.
> ---------------------------------------------------------------------------
> Traceback
> ...
>
> PariError:  (25)
>
> }}}

New description:

 Even with `proof.number_field(False)` PARI cannot compute the reduced
 generators of the ideal below.

 {{{
 sage: E = EllipticCurve('57a1')
 sage: R.<x> = QQ['x']
 sage: L.<b3> = NumberField(x^10 - 10*x^8 - 20*x^7 + 165*x^6 - 12*x^5 -
 760*x^3 + 2220*x^2 + 5280*x + 7744)
 sage: z_x = -96698852571685/2145672615243325696*b3^9 +
 2472249905907/195061146840302336*b3^8 +
 916693155514421/2145672615243325696*b3^7 +
 1348520950997779/2145672615243325696*b3^6 -
 82344497086595/12191321677518896*b3^5 +
 2627122040194919/536418153810831424*b3^4 -
 452199105143745/48765286710075584*b3^3 +
 4317002771457621/536418153810831424*b3^2 +
 2050725777454935/67052269226353928*b3 + 3711967683469209/3047830419379724
 sage: E2 = E.change_ring(L)
 sage: z = E2.lift_x(z_x)
 sage: z3=3*z
 sage: OL = L.OK()
 sage: proof.number_field(False)
 sage: gcd3 = OL.fractional_ideal(z3[0], z3[1]).gens_reduced()[0]
   ***   Warning: precision too low for generators, not given.
 ---------------------------------------------------------------------------
 Traceback
 ...

 PariError:  (25)

 }}}

--

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/11836#comment:1>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to 
[email protected].
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en.

Reply via email to