#11836: gens_reduced() does not handle "large" ideals
-----------------------------+----------------------------------------------
   Reporter:  mirela         |          Owner:  jdemeyer      
       Type:  defect         |         Status:  needs_review  
   Priority:  major          |      Milestone:  sage-4.7.2    
  Component:  number fields  |       Keywords:                
Work_issues:                 |       Upstream:  N/A           
   Reviewer:                 |         Author:  Jeroen Demeyer
     Merged:                 |   Dependencies:  #11130        
-----------------------------+----------------------------------------------
Description changed by jdemeyer:

Old description:

> PARI does not compute the reduced generators of the ideal below (even
> though the class number of `L` is 1, so the ideal is certainly
> principal):
>
> {{{
> sage: R.<x> = QQ['x']
> sage: L.<b3> = NumberField(x^10 - 10*x^8 - 20*x^7 + 165*x^6 - 12*x^5 -
> 760*x^3 + 2220*x^2 + 5280*x + 7744)
> sage: z_x = -96698852571685/2145672615243325696*b3^9 +
> 2472249905907/195061146840302336*b3^8 +
> 916693155514421/2145672615243325696*b3^7 +
> 1348520950997779/2145672615243325696*b3^6 -
> 82344497086595/12191321677518896*b3^5 +
> 2627122040194919/536418153810831424*b3^4 -
> 452199105143745/48765286710075584*b3^3 +
> 4317002771457621/536418153810831424*b3^2 +
> 2050725777454935/67052269226353928*b3 + 3711967683469209/3047830419379724
> sage: P = EllipticCurve(L, '57a1').lift_x(z_x) * 3
> sage: OL = L.OK()
> sage: ideal = L.OK().fractional_ideal(P[0], P[1])
> sage: ideal.gens_reduced(proof=False)[0]
>   ***   Warning: precision too low for generators, not given.
> ---------------------------------------------------------------------------
> Traceback
> ...
>
> PariError:  (25)
>
> }}}

New description:

 PARI does not compute the reduced generators of the ideal below (even
 though the class number of `L` is 1, so the ideal is certainly principal):

 {{{
 sage: R.<x> = QQ['x']
 sage: L.<b3> = NumberField(x^10 - 10*x^8 - 20*x^7 + 165*x^6 - 12*x^5 -
 760*x^3 + 2220*x^2 + 5280*x + 7744)
 sage: z_x = -96698852571685/2145672615243325696*b3^9 +
 2472249905907/195061146840302336*b3^8 +
 916693155514421/2145672615243325696*b3^7 +
 1348520950997779/2145672615243325696*b3^6 -
 82344497086595/12191321677518896*b3^5 +
 2627122040194919/536418153810831424*b3^4 -
 452199105143745/48765286710075584*b3^3 +
 4317002771457621/536418153810831424*b3^2 +
 2050725777454935/67052269226353928*b3 + 3711967683469209/3047830419379724
 sage: P = EllipticCurve(L, '57a1').lift_x(z_x) * 3
 sage: ideal = L.OK().fractional_ideal(P[0], P[1])
 sage: ideal.gens_reduced(proof=False)
   ***   Warning: precision too low for generators, not given.
 ---------------------------------------------------------------------------
 Traceback
 ...

 PariError:  (25)

 }}}

--

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/11836#comment:7>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to 
[email protected].
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en.

Reply via email to