Yeah i know, thats why I'm asking. i thought precision is not the same like
recall/sensitivity.

recall == sensitivity!?

But in this matrix, the precision is my calculated sensitivity, or is the
precision in this case the sensitivity?

On 17 June 2015 at 15:29, Andreas Mueller <t3k...@gmail.com> wrote:

>  Yeah that is the rounding of using %2f in the classification report.
>
>
> On 06/17/2015 09:20 AM, Joel Nothman wrote:
>
> To me, those numbers appear identical at 2 decimal places.
>
> On 17 June 2015 at 23:04, Herbert Schulz <hrbrt....@gmail.com> wrote:
>
>>   Hello everyone,
>>
>>  i wrote a function to calculate the sensitivity,specificity, ballance
>> accuracy and accuracy from a confusion matrix.
>>
>>
>>  Now i have a Problem, I'm getting different values when I'm comparing my
>> Values with those from the metrics.classification_report function.
>>  The general problem ist, my predicted sensitivity is in the
>> classification report the precision value. I'm computing every sensitivity
>> with the one vs all approach. So e.g. Class 1 == true, class 2,3,4,5 are
>> the rest (not true).
>>
>>  I did this only to get the specificity, and to compare if i computed
>> everything right.
>>
>>
>>
>> ----------- ensemble -----------
>>
>>              precision    recall  f1-score   support
>>
>>         1.0      * 0.56 *     0.68      0.61       129
>>         2.0       *0.28*      0.15      0.20        78
>>         3.0      * 0.45  *    0.47      0.46       116
>>         4.0       *0.29*      0.05      0.09        40
>>         5.0      * 0.44 *     0.66      0.53        70
>>
>> avg / total       0.43      0.47      0.43       433
>>
>>
>> Class: 1
>>  sensitivity:*0.556962025316*
>>  specificity: 0.850909090909
>>  ballanced accuracy: 0.703935558113
>>
>> Class: 2
>>  sensitivity:*0.279069767442*
>>  specificity: 0.830769230769
>>  ballanced accuracy: 0.554919499106
>>
>> Class: 3
>>  sensitivity*:0.446280991736*
>>  specificity: 0.801282051282
>>  ballanced accuracy: 0.623781521509
>>
>> Class: 4
>>  sensitivity:*0.285714285714*
>>  specificity: 0.910798122066
>>  ballanced accuracy: 0.59825620389
>>
>> Class: 5
>>  sensitivity:*0.442307692308*
>>  specificity: 0.927051671733
>>  ballanced accuracy: 0.68467968202
>>
>>
>>
>>
>>
>> ------------------------------------------------------------------------------
>>
>> _______________________________________________
>> Scikit-learn-general mailing list
>> Scikit-learn-general@lists.sourceforge.net
>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>
>>
>
>
> ------------------------------------------------------------------------------
>
>
>
> _______________________________________________
> Scikit-learn-general mailing 
> listScikit-learn-general@lists.sourceforge.nethttps://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
>
>
>
> ------------------------------------------------------------------------------
>
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
>
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to