Ok i think i have it, thanks everyone for the help!

But there is an another problem.

How are you calculating the avg?

example:

----------- k-NN -----------

             precision    recall  f1-score   support

        1.0       0.50      0.43      0.46       129
        2.0       0.31      0.40      0.35        88
        3.0       0.45      0.36      0.40       107
        4.0       0.06      0.03      0.04        33
        5.0       0.42      0.58      0.49        76

avg / total      * 0.40*      0.40      0.40       433

so: (0.5+0.31+0.45+0.06+0.42) / 5 = 0.348* ~ 0.35*    like i calculated it
in my avg part. Are you using some weights?

Class: 1
 sensitivity:0.43
 specificity: 0.81
 ballanced accuracy: 0.62
 precision 0.50
.
.
.
.

Class: 5
 sensitivity:0.58
 specificity: 0.83
 ballanced accuracy: 0.70
 precision 0.42

*avg total:*
 sensitivity: 0.36
 specificity: 0.85
 avg ballance: 0.60
* avg precision: 0.35*







On 17 June 2015 at 16:06, Herbert Schulz <hrbrt....@gmail.com> wrote:

> I actually computed it like this, maybe I did something in my TP,FP,FN,TN
> calculation wrong?
>
>
> c1,c2,c3,c4,c5=[1,0,0,0,0],[2,0,0,0,0],[3,0,0,0,0],[4,0,0,0,0],[5,0,0,0,0]
>         alle=[c1,c2,c3,c4,c5]
>
>
> #as i mentioned 1 vs all, so the first element in the array is just the
> class
> #[1,0,0,0,0]  == class 1, then in the order:   TP,FP,FN,TN
> #maybe here is something wring:
>
>         for i in alle:
>             pred=predicted
>
>             for k in range(len(predicted)):
>
>                 if float(i[0]) == y_test[k]:
>                     if float(i[0]) == pred[k]:
>                         i[1]+=1
>                     else:
>                         i[2]+=1
>
>                 elif pred[k] == float(i[0]):
>                     i[3]+=1
>                 elif pred[k] !=float(i[0]) and y_test[k] !=float(i[0]):
>                     i[4]+=1
>
> #specs looks like this: [1, 71, 51, 103, 208]
>
> sens=specs[1]/float(specs[1]+specs[3])
>
>
>
>
> if I'm calculatig
>
> sens=specs[1]/float(specs[1]+specs[2]) im getting also the recall like in
> the matrix.
>
> On 17 June 2015 at 15:42, Andreas Mueller <t3k...@gmail.com> wrote:
>
>>  Sensitivity is recall:
>> https://en.wikipedia.org/wiki/Sensitivity_and_specificity
>>
>> Recall is TP / (TP + FN) and precision is TP / (TP + FP).
>>
>> What did you compute?
>>
>>
>> On 06/17/2015 09:32 AM, Herbert Schulz wrote:
>>
>>  Yeah i know, thats why I'm asking. i thought precision is not the same
>> like recall/sensitivity.
>>
>>  recall == sensitivity!?
>>
>>  But in this matrix, the precision is my calculated sensitivity, or is
>> the precision in this case the sensitivity?
>>
>> On 17 June 2015 at 15:29, Andreas Mueller <t3k...@gmail.com> wrote:
>>
>>>  Yeah that is the rounding of using %2f in the classification report.
>>>
>>>
>>> On 06/17/2015 09:20 AM, Joel Nothman wrote:
>>>
>>> To me, those numbers appear identical at 2 decimal places.
>>>
>>> On 17 June 2015 at 23:04, Herbert Schulz <hrbrt....@gmail.com> wrote:
>>>
>>>>   Hello everyone,
>>>>
>>>>  i wrote a function to calculate the sensitivity,specificity, ballance
>>>> accuracy and accuracy from a confusion matrix.
>>>>
>>>>
>>>>  Now i have a Problem, I'm getting different values when I'm comparing
>>>> my Values with those from the metrics.classification_report function.
>>>>  The general problem ist, my predicted sensitivity is in the
>>>> classification report the precision value. I'm computing every sensitivity
>>>> with the one vs all approach. So e.g. Class 1 == true, class 2,3,4,5 are
>>>> the rest (not true).
>>>>
>>>>  I did this only to get the specificity, and to compare if i computed
>>>> everything right.
>>>>
>>>>
>>>>
>>>> ----------- ensemble -----------
>>>>
>>>>              precision    recall  f1-score   support
>>>>
>>>>         1.0      * 0.56 *     0.68      0.61       129
>>>>         2.0       *0.28*      0.15      0.20        78
>>>>         3.0      * 0.45  *    0.47      0.46       116
>>>>         4.0       *0.29*      0.05      0.09        40
>>>>         5.0      * 0.44 *     0.66      0.53        70
>>>>
>>>> avg / total       0.43      0.47      0.43       433
>>>>
>>>>
>>>> Class: 1
>>>>  sensitivity:*0.556962025316*
>>>>  specificity: 0.850909090909
>>>>  ballanced accuracy: 0.703935558113
>>>>
>>>> Class: 2
>>>>  sensitivity:*0.279069767442*
>>>>  specificity: 0.830769230769
>>>>  ballanced accuracy: 0.554919499106
>>>>
>>>> Class: 3
>>>>  sensitivity*:0.446280991736*
>>>>  specificity: 0.801282051282
>>>>  ballanced accuracy: 0.623781521509
>>>>
>>>> Class: 4
>>>>  sensitivity:*0.285714285714*
>>>>  specificity: 0.910798122066
>>>>  ballanced accuracy: 0.59825620389
>>>>
>>>> Class: 5
>>>>  sensitivity:*0.442307692308*
>>>>  specificity: 0.927051671733
>>>>  ballanced accuracy: 0.68467968202
>>>>
>>>>
>>>>
>>>>
>>>>
>>>> ------------------------------------------------------------------------------
>>>>
>>>> _______________________________________________
>>>> Scikit-learn-general mailing list
>>>> Scikit-learn-general@lists.sourceforge.net
>>>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>>>
>>>>
>>>
>>>
>>> ------------------------------------------------------------------------------
>>>
>>>
>>>
>>> _______________________________________________
>>> Scikit-learn-general mailing 
>>> listScikit-learn-general@lists.sourceforge.nethttps://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>>
>>>
>>>
>>>
>>> ------------------------------------------------------------------------------
>>>
>>> _______________________________________________
>>> Scikit-learn-general mailing list
>>> Scikit-learn-general@lists.sourceforge.net
>>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>>
>>>
>>
>>
>> ------------------------------------------------------------------------------
>>
>>
>>
>> _______________________________________________
>> Scikit-learn-general mailing 
>> listScikit-learn-general@lists.sourceforge.nethttps://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>
>>
>>
>>
>> ------------------------------------------------------------------------------
>>
>> _______________________________________________
>> Scikit-learn-general mailing list
>> Scikit-learn-general@lists.sourceforge.net
>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>
>>
>
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to