I actually computed it like this, maybe I did something in my TP,FP,FN,TN calculation wrong?
c1,c2,c3,c4,c5=[1,0,0,0,0],[2,0,0,0,0],[3,0,0,0,0],[4,0,0,0,0],[5,0,0,0,0] alle=[c1,c2,c3,c4,c5] #as i mentioned 1 vs all, so the first element in the array is just the class #[1,0,0,0,0] == class 1, then in the order: TP,FP,FN,TN #maybe here is something wring: for i in alle: pred=predicted for k in range(len(predicted)): if float(i[0]) == y_test[k]: if float(i[0]) == pred[k]: i[1]+=1 else: i[2]+=1 elif pred[k] == float(i[0]): i[3]+=1 elif pred[k] !=float(i[0]) and y_test[k] !=float(i[0]): i[4]+=1 #specs looks like this: [1, 71, 51, 103, 208] sens=specs[1]/float(specs[1]+specs[3]) if I'm calculatig sens=specs[1]/float(specs[1]+specs[2]) im getting also the recall like in the matrix. On 17 June 2015 at 15:42, Andreas Mueller <t3k...@gmail.com> wrote: > Sensitivity is recall: > https://en.wikipedia.org/wiki/Sensitivity_and_specificity > > Recall is TP / (TP + FN) and precision is TP / (TP + FP). > > What did you compute? > > > On 06/17/2015 09:32 AM, Herbert Schulz wrote: > > Yeah i know, thats why I'm asking. i thought precision is not the same > like recall/sensitivity. > > recall == sensitivity!? > > But in this matrix, the precision is my calculated sensitivity, or is the > precision in this case the sensitivity? > > On 17 June 2015 at 15:29, Andreas Mueller <t3k...@gmail.com> wrote: > >> Yeah that is the rounding of using %2f in the classification report. >> >> >> On 06/17/2015 09:20 AM, Joel Nothman wrote: >> >> To me, those numbers appear identical at 2 decimal places. >> >> On 17 June 2015 at 23:04, Herbert Schulz <hrbrt....@gmail.com> wrote: >> >>> Hello everyone, >>> >>> i wrote a function to calculate the sensitivity,specificity, ballance >>> accuracy and accuracy from a confusion matrix. >>> >>> >>> Now i have a Problem, I'm getting different values when I'm comparing >>> my Values with those from the metrics.classification_report function. >>> The general problem ist, my predicted sensitivity is in the >>> classification report the precision value. I'm computing every sensitivity >>> with the one vs all approach. So e.g. Class 1 == true, class 2,3,4,5 are >>> the rest (not true). >>> >>> I did this only to get the specificity, and to compare if i computed >>> everything right. >>> >>> >>> >>> ----------- ensemble ----------- >>> >>> precision recall f1-score support >>> >>> 1.0 * 0.56 * 0.68 0.61 129 >>> 2.0 *0.28* 0.15 0.20 78 >>> 3.0 * 0.45 * 0.47 0.46 116 >>> 4.0 *0.29* 0.05 0.09 40 >>> 5.0 * 0.44 * 0.66 0.53 70 >>> >>> avg / total 0.43 0.47 0.43 433 >>> >>> >>> Class: 1 >>> sensitivity:*0.556962025316* >>> specificity: 0.850909090909 >>> ballanced accuracy: 0.703935558113 >>> >>> Class: 2 >>> sensitivity:*0.279069767442* >>> specificity: 0.830769230769 >>> ballanced accuracy: 0.554919499106 >>> >>> Class: 3 >>> sensitivity*:0.446280991736* >>> specificity: 0.801282051282 >>> ballanced accuracy: 0.623781521509 >>> >>> Class: 4 >>> sensitivity:*0.285714285714* >>> specificity: 0.910798122066 >>> ballanced accuracy: 0.59825620389 >>> >>> Class: 5 >>> sensitivity:*0.442307692308* >>> specificity: 0.927051671733 >>> ballanced accuracy: 0.68467968202 >>> >>> >>> >>> >>> >>> ------------------------------------------------------------------------------ >>> >>> _______________________________________________ >>> Scikit-learn-general mailing list >>> Scikit-learn-general@lists.sourceforge.net >>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general >>> >>> >> >> >> ------------------------------------------------------------------------------ >> >> >> >> _______________________________________________ >> Scikit-learn-general mailing >> listScikit-learn-general@lists.sourceforge.nethttps://lists.sourceforge.net/lists/listinfo/scikit-learn-general >> >> >> >> >> ------------------------------------------------------------------------------ >> >> _______________________________________________ >> Scikit-learn-general mailing list >> Scikit-learn-general@lists.sourceforge.net >> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general >> >> > > > ------------------------------------------------------------------------------ > > > > _______________________________________________ > Scikit-learn-general mailing > listScikit-learn-general@lists.sourceforge.nethttps://lists.sourceforge.net/lists/listinfo/scikit-learn-general > > > > > ------------------------------------------------------------------------------ > > _______________________________________________ > Scikit-learn-general mailing list > Scikit-learn-general@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/scikit-learn-general > >
------------------------------------------------------------------------------
_______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general