I actually computed it like this, maybe I did something in my TP,FP,FN,TN
calculation wrong?


c1,c2,c3,c4,c5=[1,0,0,0,0],[2,0,0,0,0],[3,0,0,0,0],[4,0,0,0,0],[5,0,0,0,0]
        alle=[c1,c2,c3,c4,c5]


#as i mentioned 1 vs all, so the first element in the array is just the
class
#[1,0,0,0,0]  == class 1, then in the order:   TP,FP,FN,TN
#maybe here is something wring:

        for i in alle:
            pred=predicted

            for k in range(len(predicted)):

                if float(i[0]) == y_test[k]:
                    if float(i[0]) == pred[k]:
                        i[1]+=1
                    else:
                        i[2]+=1

                elif pred[k] == float(i[0]):
                    i[3]+=1
                elif pred[k] !=float(i[0]) and y_test[k] !=float(i[0]):
                    i[4]+=1

#specs looks like this: [1, 71, 51, 103, 208]

sens=specs[1]/float(specs[1]+specs[3])




if I'm calculatig

sens=specs[1]/float(specs[1]+specs[2]) im getting also the recall like in
the matrix.

On 17 June 2015 at 15:42, Andreas Mueller <t3k...@gmail.com> wrote:

>  Sensitivity is recall:
> https://en.wikipedia.org/wiki/Sensitivity_and_specificity
>
> Recall is TP / (TP + FN) and precision is TP / (TP + FP).
>
> What did you compute?
>
>
> On 06/17/2015 09:32 AM, Herbert Schulz wrote:
>
>  Yeah i know, thats why I'm asking. i thought precision is not the same
> like recall/sensitivity.
>
>  recall == sensitivity!?
>
>  But in this matrix, the precision is my calculated sensitivity, or is the
> precision in this case the sensitivity?
>
> On 17 June 2015 at 15:29, Andreas Mueller <t3k...@gmail.com> wrote:
>
>>  Yeah that is the rounding of using %2f in the classification report.
>>
>>
>> On 06/17/2015 09:20 AM, Joel Nothman wrote:
>>
>> To me, those numbers appear identical at 2 decimal places.
>>
>> On 17 June 2015 at 23:04, Herbert Schulz <hrbrt....@gmail.com> wrote:
>>
>>>   Hello everyone,
>>>
>>>  i wrote a function to calculate the sensitivity,specificity, ballance
>>> accuracy and accuracy from a confusion matrix.
>>>
>>>
>>>  Now i have a Problem, I'm getting different values when I'm comparing
>>> my Values with those from the metrics.classification_report function.
>>>  The general problem ist, my predicted sensitivity is in the
>>> classification report the precision value. I'm computing every sensitivity
>>> with the one vs all approach. So e.g. Class 1 == true, class 2,3,4,5 are
>>> the rest (not true).
>>>
>>>  I did this only to get the specificity, and to compare if i computed
>>> everything right.
>>>
>>>
>>>
>>> ----------- ensemble -----------
>>>
>>>              precision    recall  f1-score   support
>>>
>>>         1.0      * 0.56 *     0.68      0.61       129
>>>         2.0       *0.28*      0.15      0.20        78
>>>         3.0      * 0.45  *    0.47      0.46       116
>>>         4.0       *0.29*      0.05      0.09        40
>>>         5.0      * 0.44 *     0.66      0.53        70
>>>
>>> avg / total       0.43      0.47      0.43       433
>>>
>>>
>>> Class: 1
>>>  sensitivity:*0.556962025316*
>>>  specificity: 0.850909090909
>>>  ballanced accuracy: 0.703935558113
>>>
>>> Class: 2
>>>  sensitivity:*0.279069767442*
>>>  specificity: 0.830769230769
>>>  ballanced accuracy: 0.554919499106
>>>
>>> Class: 3
>>>  sensitivity*:0.446280991736*
>>>  specificity: 0.801282051282
>>>  ballanced accuracy: 0.623781521509
>>>
>>> Class: 4
>>>  sensitivity:*0.285714285714*
>>>  specificity: 0.910798122066
>>>  ballanced accuracy: 0.59825620389
>>>
>>> Class: 5
>>>  sensitivity:*0.442307692308*
>>>  specificity: 0.927051671733
>>>  ballanced accuracy: 0.68467968202
>>>
>>>
>>>
>>>
>>>
>>> ------------------------------------------------------------------------------
>>>
>>> _______________________________________________
>>> Scikit-learn-general mailing list
>>> Scikit-learn-general@lists.sourceforge.net
>>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>>
>>>
>>
>>
>> ------------------------------------------------------------------------------
>>
>>
>>
>> _______________________________________________
>> Scikit-learn-general mailing 
>> listScikit-learn-general@lists.sourceforge.nethttps://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>
>>
>>
>>
>> ------------------------------------------------------------------------------
>>
>> _______________________________________________
>> Scikit-learn-general mailing list
>> Scikit-learn-general@lists.sourceforge.net
>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>
>>
>
>
> ------------------------------------------------------------------------------
>
>
>
> _______________________________________________
> Scikit-learn-general mailing 
> listScikit-learn-general@lists.sourceforge.nethttps://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
>
>
>
> ------------------------------------------------------------------------------
>
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
>
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to