what is the failing test? please provide the full traceback. On 24 Jul 2017 10:58 pm, "Sam Barnett" <sambarnet...@gmail.com> wrote:
> Dear scikit-learn developers, > > I am developing a transformer, named Sqizer, that has the ultimate goal > of modifying a kernel for use with the sklearn.svm package. When given an > input data array X, Sqizer.transform(X) should have as its output the > Gram matrix for X using the modified version of the kernel. Here is the > code for the class so far: > > class Sqizer(BaseEstimator, TransformerMixin): > > def __init__(self, C=1.0, kernel='rbf', degree=3, gamma=1, > coef0=0.0, cut_ord_pair=(2,1)): > self.C = C > self.kernel = kernel > self.degree = degree > self.gamma = gamma > self.coef0 = coef0 > self.cut_ord_pair = cut_ord_pair > > def fit(self, X, y=None): > # Check that X and y have correct shape > X, y = check_X_y(X, y) > # Store the classes seen during fit > self.classes_ = unique_labels(y) > > self.X_ = X > self.y_ = y > return self > > def transform(self, X): > > X = check_array(X, warn_on_dtype=True) > > """Returns Gram matrix corresponding to X, once sqized.""" > def kPolynom(x,y): > return (self.coef0+self.gamma*np.inner(x,y))**self.degree > def kGauss(x,y): > return np.exp(-self.gamma*np.sum(np.square(x-y))) > def kLinear(x,y): > return np.inner(x,y) > def kSigmoid(x,y): > return np.tanh(self.gamma*np.inner(x,y) +self.coef0) > > def kernselect(kername): > switcher = { > 'linear': kPolynom, > 'rbf': kGauss, > 'sigmoid': kLinear, > 'poly': kSigmoid, > } > return switcher.get(kername, "nothing") > > cut_off = self.cut_ord_pair[0] > order = self.cut_ord_pair[1] > > from SeqKernel import hiSeqKernEval > > def getGram(Y): > gram_matrix = np.zeros((Y.shape[0], Y.shape[0])) > for row1ind in range(Y.shape[0]): > for row2ind in range > > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn > > ...
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn