This is the Traceback I get:
AssertionErrorTraceback (most recent call last) <ipython-input-5-166b8f0141db> in <module>() ----> 1 check_estimator(OK.Sqizer) /Users/Sam/anaconda/lib/python2.7/site-packages/sklearn/utils/estimator_ checks.pyc in check_estimator(Estimator) 253 check_parameters_default_constructible(name, Estimator) 254 for check in _yield_all_checks(name, Estimator): --> 255 check(name, Estimator) 256 257 /Users/Sam/anaconda/lib/python2.7/site-packages/sklearn/utils/testing.pyc in wrapper(*args, **kwargs) 353 with warnings.catch_warnings(): 354 warnings.simplefilter("ignore", self.category) --> 355 return fn(*args, **kwargs) 356 357 return wrapper /Users/Sam/anaconda/lib/python2.7/site-packages/sklearn/utils/estimator_checks.pyc in check_transformer_general(name, Transformer) 578 X = StandardScaler().fit_transform(X) 579 X -= X.min() --> 580 _check_transformer(name, Transformer, X, y) 581 _check_transformer(name, Transformer, X.tolist(), y.tolist()) 582 /Users/Sam/anaconda/lib/python2.7/site-packages/sklearn/utils/estimator_checks.pyc in _check_transformer(name, Transformer, X, y) 671 if hasattr(X, 'T'): 672 # If it's not an array, it does not have a 'T' property --> 673 assert_raises(ValueError, transformer.transform, X.T) 674 675 /Users/Sam/anaconda/lib/python2.7/unittest/case.pyc in assertRaises(self, excClass, callableObj, *args, **kwargs) 471 return context 472 with context: --> 473 callableObj(*args, **kwargs) 474 475 def _getAssertEqualityFunc(self, first, second): /Users/Sam/anaconda/lib/python2.7/unittest/case.pyc in __exit__(self, exc_type, exc_value, tb) 114 exc_name = str(self.expected) 115 raise self.failureException( --> 116 "{0} not raised".format(exc_name)) 117 if not issubclass(exc_type, self.expected): 118 # let unexpected exceptions pass through AssertionError: ValueError not raised On Tue, Jul 25, 2017 at 12:54 AM, Joel Nothman <joel.noth...@gmail.com> wrote: > what is the failing test? please provide the full traceback. > > On 24 Jul 2017 10:58 pm, "Sam Barnett" <sambarnet...@gmail.com> wrote: > >> Dear scikit-learn developers, >> >> I am developing a transformer, named Sqizer, that has the ultimate goal >> of modifying a kernel for use with the sklearn.svm package. When given >> an input data array X, Sqizer.transform(X) should have as its output the >> Gram matrix for X using the modified version of the kernel. Here is the >> code for the class so far: >> >> class Sqizer(BaseEstimator, TransformerMixin): >> >> def __init__(self, C=1.0, kernel='rbf', degree=3, gamma=1, >> coef0=0.0, cut_ord_pair=(2,1)): >> self.C = C >> self.kernel = kernel >> self.degree = degree >> self.gamma = gamma >> self.coef0 = coef0 >> self.cut_ord_pair = cut_ord_pair >> >> def fit(self, X, y=None): >> # Check that X and y have correct shape >> X, y = check_X_y(X, y) >> # Store the classes seen during fit >> self.classes_ = unique_labels(y) >> >> self.X_ = X >> self.y_ = y >> return self >> >> def transform(self, X): >> >> X = check_array(X, warn_on_dtype=True) >> >> """Returns Gram matrix corresponding to X, once sqized.""" >> def kPolynom(x,y): >> return (self.coef0+self.gamma*np.inner(x,y))**self.degree >> def kGauss(x,y): >> return np.exp(-self.gamma*np.sum(np.square(x-y))) >> def kLinear(x,y): >> return np.inner(x,y) >> def kSigmoid(x,y): >> return np.tanh(self.gamma*np.inner(x,y) +self.coef0) >> >> def kernselect(kername): >> switcher = { >> 'linear': kPolynom, >> 'rbf': kGauss, >> 'sigmoid': kLinear, >> 'poly': kSigmoid, >> } >> return switcher.get(kername, "nothing") >> >> cut_off = self.cut_ord_pair[0] >> order = self.cut_ord_pair[1] >> >> from SeqKernel import hiSeqKernEval >> >> def getGram(Y): >> gram_matrix = np.zeros((Y. >> >> ... > > [Message clipped] > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn > >
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn