Apologies: I've since worked out what the problem was and have resolved this issue. This was what I was missing in my code:
# Check that the input is of the same shape as the one passed # during fit. if X.shape != self.input_shape_: raise ValueError('Shape of input is different from what was seen' 'in `fit`') On Tue, Jul 25, 2017 at 9:41 AM, Sam Barnett <sambarnet...@gmail.com> wrote: > This is the Traceback I get: > > > AssertionErrorTraceback (most recent call last) > <ipython-input-5-166b8f0141db> in <module>() > ----> 1 check_estimator(OK.Sqizer) > > /Users/Sam/anaconda/lib/python2.7/site-packages/sklearn/ > utils/estimator_checks.pyc in check_estimator(Estimator) > 253 check_parameters_default_constructible(name, Estimator) > 254 for check in _yield_all_checks(name, Estimator): > --> 255 check(name, Estimator) > 256 > 257 > > /Users/Sam/anaconda/lib/python2.7/site-packages/sklearn/utils/testing.pyc > in wrapper(*args, **kwargs) > 353 with warnings.catch_warnings(): > 354 warnings.simplefilter("ignore", self.category) > --> 355 return fn(*args, **kwargs) > 356 > 357 return wrapper > > /Users/Sam/anaconda/lib/python2.7/site-packages/sklearn/utils/estimator_checks.pyc > in check_transformer_general(name, Transformer) > 578 X = StandardScaler().fit_transform(X) > 579 X -= X.min() > --> 580 _check_transformer(name, Transformer, X, y) > 581 _check_transformer(name, Transformer, X.tolist(), y.tolist()) > 582 > > /Users/Sam/anaconda/lib/python2.7/site-packages/sklearn/utils/estimator_checks.pyc > in _check_transformer(name, Transformer, X, y) > 671 if hasattr(X, 'T'): > 672 # If it's not an array, it does not have a 'T' property > --> 673 assert_raises(ValueError, transformer.transform, X.T) > 674 > 675 > > /Users/Sam/anaconda/lib/python2.7/unittest/case.pyc in assertRaises(self, > excClass, callableObj, *args, **kwargs) > 471 return context > 472 with context: > --> 473 callableObj(*args, **kwargs) > 474 > 475 def _getAssertEqualityFunc(self, first, second): > > /Users/Sam/anaconda/lib/python2.7/unittest/case.pyc in __exit__(self, > exc_type, exc_value, tb) > 114 exc_name = str(self.expected) > 115 raise self.failureException( > --> 116 "{0} not raised".format(exc_name)) > 117 if not issubclass(exc_type, self.expected): > 118 # let unexpected exceptions pass through > > AssertionError: ValueError not raised > > > On Tue, Jul 25, 2017 at 12:54 AM, Joel Nothman <joel.noth...@gmail.com> > wrote: > >> what is the failing test? please provide the full traceback. >> >> On 24 Jul 2017 10:58 pm, "Sam Barnett" <sambarnet...@gmail.com> wrote: >> >>> Dear scikit-learn developers, >>> >>> I am developing a transformer, named Sqizer, that has the ultimate goal >>> of modifying a kernel for use with the sklearn.svm package. When given >>> an input data array X, Sqizer.transform(X) should have as its output >>> the Gram matrix for X using the modified version of the kernel. Here is >>> the code for the class so far: >>> >>> class Sqizer(BaseEstimator, TransformerMixin): >>> >>> def __init__(self, C=1.0, kernel='rbf', degree=3, gamma=1, >>> coef0=0.0, cut_ord_pair=(2,1)): >>> self.C = C >>> self.kernel = kernel >>> self.degree = degree >>> self.gamma = gamma >>> self.coef0 = coef0 >>> self.cut_ord_pair = cut_ord_pair >>> >>> def fit(self, X, y=None): >>> # Check that X and y have correct shape >>> X, y = check_X_y(X, y) >>> # Store the classes seen during fit >>> self.classes_ = unique_labels(y) >>> >>> self.X_ = X >>> self.y_ = y >>> return self >>> >>> def transform(self, X): >>> >>> X = check_array(X, warn_on_dtype=True) >>> >>> """Returns Gram matrix corresponding to X, once sqized.""" >>> def kPolynom(x,y): >>> return (self.coef0+self.gamma*np.inner(x,y))**self.degree >>> def kGauss(x,y): >>> return np.exp(-self.gamma*np.sum(np.square(x-y))) >>> def kLinear(x,y): >>> return np.inner(x,y) >>> def kSigmoid(x,y): >>> return np.tanh(self.gamma*np.inner(x,y) +self.coef0) >>> >>> def kernselect(kername): >>> switcher = { >>> 'linear': kPolynom, >>> 'rbf': kGauss, >>> 'sigmoid': kLinear, >>> 'poly': kSigmoid, >>> } >>> return switcher.get(kername, "nothing") >>> >>> cut_off = self.cut_ord_pair[0] >>> order = self.cut_ord_pair[1] >>> >>> from SeqKernel import hiSeqKernEval >>> >>> def getGram(Y): >>> gram_matrix = np.zeros((Y. >>> >>> ... >> >> [Message clipped] >> _______________________________________________ >> scikit-learn mailing list >> scikit-learn@python.org >> https://mail.python.org/mailman/listinfo/scikit-learn >> >> >
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn